Distribution of values of Gaussian hypergeometric functions

被引:0
作者
Ono, Ken [1 ]
Saad, Hasan [1 ]
Saikia, Neelam [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
关键词
Gaussian hypergeometric functions; Distributions; Elliptic curves; SUPERCONGRUENCE CONJECTURE; ELLIPTIC-CURVES; HECKE OPERATORS; SERIES; TRACES; FROBENIUS; MODULARITY; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the 1980s, Greene defined hypergeometric functions over finite fields using Jacobi sums. The framework of his theory establishes that these functions possess many properties that are analogous to those of the classical hypergeometric series studied by Gauss and Kummer. These functions have played important roles in the study of Apery-style supercongruences, the Eichler-Selberg trace formula, Galois representations, and zeta-functions of arithmetic varieties. We study the value distribution (over large finite fields) of natural families of these functions. For the F-2(1) functions, the limiting distribution is semicircular (i.e. SU(2)), whereas the distribution for the F-3(2) functions is the Batman distribution for the traces of the real orthogonal group O-3.
引用
收藏
页码:371 / 407
页数:37
相关论文
共 50 条
  • [41] Landen inequalities for Gaussian hypergeometric function
    Zhao, Tie-Hong
    Wang, Miao-Kun
    Hai, Guo-Jing
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [42] Generalization of some hypergeometric functions
    Kerada, Mohamed
    Boussayoud, Ali
    Abderrezzak, Abdelhamid
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (03): : 711 - 720
  • [43] Monodromy of A-hypergeometric functions
    Beukers, Frits
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 718 : 183 - 206
  • [44] Conditional lower bounds on the distribution of central values in families of L-functions
    Radziwill, Maksym
    Soundararajan, Kannan
    [J]. ACTA ARITHMETICA, 2024, 214 : 481 - 497
  • [45] Conditional lower bounds on the distribution of central values in families of L-functions
    Radziwill, Maksym
    Soundararajan, Kannan
    [J]. ACTA ARITHMETICA, 2024,
  • [46] On the Analytic Complexity of Hypergeometric Functions
    Sadykov, T. M.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 298 (01) : 248 - 255
  • [47] Quadratic transformation inequalities for Gaussian hypergeometric function
    Zhao, Tie-Hong
    Wang, Miao-Kun
    Zhang, Wen
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [48] A transformation and certain special values of hypergeometric series over finite fields
    Kalita, Gautam
    Azharuddin, Shaik
    [J]. RAMANUJAN JOURNAL, 2025, 66 (02)
  • [49] ON THE POLYNOMIAL xd + ax plus b OVER Fq AND GAUSSIAN HYPERGEOMETRIC SERIES
    Barman, Rupam
    Kalita, Gautam
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (07) : 1753 - 1763
  • [50] On the linear independence of the values of Gauss hypergeometric function
    Merila, Ville
    [J]. ACTA ARITHMETICA, 2010, 144 (04) : 349 - 371