A novel method to identify influential nodes based on hybrid topology structure

被引:11
作者
Wan, Di [1 ]
Yang, Jianxi [1 ]
Zhang, Tingping [1 ]
Xiong, Yuanjun [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Informat Sci & Engn, Chongqing 400074, Peoples R China
关键词
Rail transit network; Complex network; Influential nodes; Topology of neighbor nodes; Global influence; COMPLEX NETWORKS; RANKING; CENTRALITY;
D O I
10.1016/j.phycom.2023.102046
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the increasing popularity of rail transit and the increasing number of light rail trips, the vulnerability of rail transit has become increasingly prominent. Once the rail transit is maliciously broken or the light rail station is repaired, it may lead to large-scale congestion or even the paralysis of the whole rail transit network. Hence, it is particularly important to identify the influential nodes in the rail transit network. Existing identifying methods considered a single scenario on either betweenness centrality (BC) or closeness centrality. In this paper, we propose a hybrid topology structure (HTS) method to identify the critical nodes based on complex network theory. Our proposed method comprehensively considers the topology of the node itself, the topology of neighbor nodes, and the global influence of the node itself. Finally, the susceptible-infected-recovered (SIR) model, the monotonicity (M), the distinct metric (DM), the Jaccard similarity coefficient (JSC), and the Kendall correlation coefficient (KC) are utilized to evaluate the proposed method over the six real-world networks. Experimental results confirm that the proposed method achieves higher performance than existing methods in identifying networks. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A community-based entropic method to identify influential nodes across multiple social networks
    Vafaei, Narges
    Sheikhi, Farnaz
    Ghasemi, Abdorasoul
    SOCIAL NETWORK ANALYSIS AND MINING, 2025, 15 (01)
  • [42] Identifying influential nodes in complex networks with community structure
    Zhang, Xiaohang
    Zhu, Ji
    Wang, Qi
    Zhao, Han
    KNOWLEDGE-BASED SYSTEMS, 2013, 42 : 74 - 84
  • [43] Identifying influential nodes based on resistance distance
    Li, Min
    Zhou, Shuming
    Wang, Dajin
    Chen, Gaolin
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 67
  • [44] Finding influential nodes in social networks based on neighborhood correlation coefficient
    Zareie, Ahmad
    Sheikhahmadi, Amir
    Jalili, Mahdi
    Fasaei, Mohammad Sajjad Khaksar
    KNOWLEDGE-BASED SYSTEMS, 2020, 194 (194)
  • [45] Identifying Influential Nodes in Complex Networks Based on Local Neighbor Contribution
    Dai, Jinying
    Wang, Bin
    Sheng, Jinfang
    Sun, Zejun
    Khawaja, Faiza Riaz
    Ullah, Aman
    Dejene, Dawit Aklilu
    Duan, Guihua
    IEEE ACCESS, 2019, 7 : 131719 - 131731
  • [46] Ranking influential nodes in complex networks based on local and global structures
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4394 - 4407
  • [47] A modified efficiency centrality to identify influential nodes in weighted networks
    Yunchuan Wang
    Shasha Wang
    Yong Deng
    Pramana, 2019, 92
  • [48] Cost effective approach to identify multiple influential spreaders based on the cycle structure in networks
    Shi, Wenfeng
    Xu, Shuqi
    Fan, Tianlong
    Lu, Linyuan
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (09)
  • [49] A novel measure to identify influential nodes: Return Random Walk Gravity Centrality
    Curado, Manuel
    Tortosa, Leandro
    Vicent, Jose F.
    INFORMATION SCIENCES, 2023, 628 : 177 - 195
  • [50] WSLC: Weighted semi-local centrality to identify influential nodes in complex networks
    Wang, Xiaofeng
    Othman, Marini
    Dewi, Deshinta Arrova
    Wang, Yonghong
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)