A novel method to identify influential nodes based on hybrid topology structure

被引:11
作者
Wan, Di [1 ]
Yang, Jianxi [1 ]
Zhang, Tingping [1 ]
Xiong, Yuanjun [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Informat Sci & Engn, Chongqing 400074, Peoples R China
关键词
Rail transit network; Complex network; Influential nodes; Topology of neighbor nodes; Global influence; COMPLEX NETWORKS; RANKING; CENTRALITY;
D O I
10.1016/j.phycom.2023.102046
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the increasing popularity of rail transit and the increasing number of light rail trips, the vulnerability of rail transit has become increasingly prominent. Once the rail transit is maliciously broken or the light rail station is repaired, it may lead to large-scale congestion or even the paralysis of the whole rail transit network. Hence, it is particularly important to identify the influential nodes in the rail transit network. Existing identifying methods considered a single scenario on either betweenness centrality (BC) or closeness centrality. In this paper, we propose a hybrid topology structure (HTS) method to identify the critical nodes based on complex network theory. Our proposed method comprehensively considers the topology of the node itself, the topology of neighbor nodes, and the global influence of the node itself. Finally, the susceptible-infected-recovered (SIR) model, the monotonicity (M), the distinct metric (DM), the Jaccard similarity coefficient (JSC), and the Kendall correlation coefficient (KC) are utilized to evaluate the proposed method over the six real-world networks. Experimental results confirm that the proposed method achieves higher performance than existing methods in identifying networks. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Identifying influential nodes in complex networks based on global and local structure
    Sheng, Jinfang
    Dai, Jinying
    Wang, Bin
    Duan, Guihua
    Long, Jun
    Zhang, Junkai
    Guan, Kerong
    Hu, Sheng
    Chen, Long
    Guan, Wanghao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541
  • [32] Embedding model of multilayer networks structure and its application to identify influential nodes
    Lei, Mingli
    Cheong, Kang Hao
    INFORMATION SCIENCES, 2024, 661
  • [33] A new method of identifying influential nodes in complex networks based on TOPSIS
    Du, Yuxian
    Gao, Cai
    Hu, Yong
    Mahadevan, Sankaran
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 399 : 57 - 69
  • [34] Identifying influential nodes for the networks with community structure
    Zhao, Zi-Juan
    Guo, Qiang
    Yu, Kai
    Liu, Jian-Guo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 551
  • [35] Hybrid Global Structure Model for Unraveling Influential Nodes in Complex Networks
    Mukhtar, Mohd Fariduddin
    Abas, Zuraida Abal
    Rasib, Amir Hamzah Abdul
    Anuar, Siti Haryanti Hairol
    Zaki, Nurul Hafizah Mohd
    Rahman, Ahmad Fadzli Nizam Abdul
    Abidin, Zaheera Zainal
    Shibghatullah, Abdul Samad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 724 - 730
  • [36] Neighborhood Topology to Discover Influential Nodes in a Complex Network
    Saxena, Chandni
    Doja, M. N.
    Ahmad, Tanvir
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS, FICTA 2016, VOL 1, 2017, 515 : 323 - 332
  • [37] The Identification of Influential Nodes Based on Neighborhood Information in Asymmetric Networks
    Liu, Gehui
    Chen, Yuqi
    Chen, Haichen
    Dai, Jiehao
    Wang, Wenjie
    Yu, Senbin
    SYMMETRY-BASEL, 2024, 16 (02):
  • [38] A Novel Centrality of Influential Nodes Identification in Complex Networks
    Yang, Yuanzhi
    Wang, Xing
    Chen, You
    Hu, Min
    Ruan, Chengwei
    IEEE ACCESS, 2020, 8 : 58742 - 58751
  • [39] Identify influential nodes in complex networks based on Modified TOPSIS
    WuXuguang
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 1474 - 1479
  • [40] Identification of Influential Nodes in Industrial Networks Based on Structure Analysis
    Wang, Tianyu
    Zeng, Peng
    Zhao, Jianming
    Liu, Xianda
    Zhang, Bowen
    SYMMETRY-BASEL, 2022, 14 (02):