A novel method to identify influential nodes based on hybrid topology structure

被引:11
作者
Wan, Di [1 ]
Yang, Jianxi [1 ]
Zhang, Tingping [1 ]
Xiong, Yuanjun [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Informat Sci & Engn, Chongqing 400074, Peoples R China
关键词
Rail transit network; Complex network; Influential nodes; Topology of neighbor nodes; Global influence; COMPLEX NETWORKS; RANKING; CENTRALITY;
D O I
10.1016/j.phycom.2023.102046
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the increasing popularity of rail transit and the increasing number of light rail trips, the vulnerability of rail transit has become increasingly prominent. Once the rail transit is maliciously broken or the light rail station is repaired, it may lead to large-scale congestion or even the paralysis of the whole rail transit network. Hence, it is particularly important to identify the influential nodes in the rail transit network. Existing identifying methods considered a single scenario on either betweenness centrality (BC) or closeness centrality. In this paper, we propose a hybrid topology structure (HTS) method to identify the critical nodes based on complex network theory. Our proposed method comprehensively considers the topology of the node itself, the topology of neighbor nodes, and the global influence of the node itself. Finally, the susceptible-infected-recovered (SIR) model, the monotonicity (M), the distinct metric (DM), the Jaccard similarity coefficient (JSC), and the Kendall correlation coefficient (KC) are utilized to evaluate the proposed method over the six real-world networks. Experimental results confirm that the proposed method achieves higher performance than existing methods in identifying networks. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A novel measure of identifying influential nodes in complex networks
    Lv, Zhiwei
    Zhao, Nan
    Xiong, Fei
    Chen, Nan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 488 - 497
  • [22] A novel method of identifying influential nodes in complex networks based on random walks
    Zhang, Tingping
    Liang, Xinyu
    Journal of Information and Computational Science, 2014, 11 (18): : 6735 - 6740
  • [23] Influential nodes identification based on hierarchical structure
    Wang, Longyun
    Mou, Jianhong
    Dai, Bitao
    Tan, Suoyi
    Cai, Mengsi
    Chen, Huan
    Jin, Zhen
    Sun, Guiquan
    Lu, Xin
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [24] A Novel Method to Rank Influential Nodes in Complex Networks Based on Tsallis Entropy
    Chen, Xuegong
    Zhou, Jie
    Liao, Zhifang
    Liu, Shengzong
    Zhang, Yan
    ENTROPY, 2020, 22 (08)
  • [25] Identifying influential nodes in complex networks based on network embedding and local structure entropy
    Lu, Pengli
    Yang, Junxia
    Zhang, Teng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (08):
  • [26] A novel method for identifying influential nodes in complex networks based on gravity model
    Jiang, Yuan
    Yang, Song-Qing
    Yan, Yu-Wei
    Tong, Tian-Chi
    Dai, Ji-Yang
    CHINESE PHYSICS B, 2022, 31 (05)
  • [27] The random walk-based gravity model to identify influential nodes in complex networks
    Zhao, Jie
    Wen, Tao
    Jahanshahi, Hadi
    Cheong, Kang Hao
    INFORMATION SCIENCES, 2022, 609 : 1706 - 1720
  • [28] A Novel Method to Identify Key Nodes in Complex Networks Based on Degree and Neighborhood Information
    Zhao, Na
    Yang, Shuangping
    Wang, Hao
    Zhou, Xinyuan
    Luo, Ting
    Wang, Jian
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [29] A novel potential edge weight method for identifying influential nodes in complex networks based on neighborhood and position
    Meng, Lei
    Xu, Guiqiong
    Yang, Pingle
    Tu, Dengqin
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 60
  • [30] A modified efficiency centrality to identify influential nodes in weighted networks
    Wang, Yunchuan
    Wang, Shasha
    Deng, Yong
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):