Higher Koszul Brackets on the Cotangent Complex

被引:3
作者
Herbig, Hans-Christian [1 ]
Herden, Daniel [2 ]
Seaton, Christopher [3 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Matemat Aplicada, Rio De Janeiro, Brazil
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
[3] Rhodes Coll, Dept Math & Comp Sci, Memphis, TN 38112 USA
关键词
DEFORMATION QUANTIZATION; POISSON; ALGEBRAS;
D O I
10.1093/imrn/rnac170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = k[x(1), x(2), ..., x(n)]/I be a commutative algebra where k is a field, char(k) = 0, and I subset of S := k[x(1), x(2), ..., x(n)] a Poisson ideal. It is well known that [dx(i), dx(j)] := d{x(i),x(j)} defines a Lie bracket on the A-module Omega(A vertical bar k) of Kahler differentials, making (A, Omega(A vertical bar k)) a Lie-Rinehart pair. If A is not regular, that is, Omega(A vertical bar k) is not projective, the cotangent complex L-A vertical bar k serves as a replacement for Omega(A vertical bar k). We prove that L-A vertical bar k is an L-infinity-algebroid compatible with the Lie-Rinehart pair (A, Omega(A vertical bar k)). The L-infinity-algebroid structure comes from a P-infinity-algebra structure on the resolvent of the morphism S -> A. We identify examples when this L-infinity-algebroid simplifies to a dg Lie algebroid, concentrating on cases where S is Z(>= 0)-graded and I and { , } are homogeneous.
引用
收藏
页码:11592 / 11644
页数:53
相关论文
共 61 条
  • [21] Symplectic quotients have symplectic singularities
    Herbig, Hans-Christian
    Schwarz, Gerald W.
    Seaton, Christopher
    [J]. COMPOSITIO MATHEMATICA, 2020, 156 (03) : 613 - 646
  • [22] When is a symplectic quotient an orbifold?
    Herbig, Hans-Christian
    Schwarz, Gerald W.
    Seaton, Christopher
    [J]. ADVANCES IN MATHEMATICS, 2015, 280 : 208 - 224
  • [23] HUEBSCHMANN J, 1990, J REINE ANGEW MATH, V408, P57
  • [24] Karasev M.V., 1993, TRANSLATIONS MATH MO, V119
  • [25] Kazinski PO, 2005, J HIGH ENERGY PHYS
  • [26] Khudaverdian HM, 2008, AIP CONF PROC, V1079, P203, DOI 10.1063/1.3043861
  • [27] Klein F., VORLESUNGEN BER IKOS
  • [28] Deformation quantization of Poisson manifolds
    Kontsevich, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (03) : 157 - 216
  • [29] Poisson Manifolds, Lie Algebroids, Modular Classes: a Survey
    Kosmann-Schwarzbach, Yvette
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [30] On Kahler's integral differential forms of arithmetic function fields
    Kunz, E
    Waldi, R
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2003, 73 (1): : 297 - 310