Higher Koszul Brackets on the Cotangent Complex

被引:3
作者
Herbig, Hans-Christian [1 ]
Herden, Daniel [2 ]
Seaton, Christopher [3 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Matemat Aplicada, Rio De Janeiro, Brazil
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
[3] Rhodes Coll, Dept Math & Comp Sci, Memphis, TN 38112 USA
关键词
DEFORMATION QUANTIZATION; POISSON; ALGEBRAS;
D O I
10.1093/imrn/rnac170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = k[x(1), x(2), ..., x(n)]/I be a commutative algebra where k is a field, char(k) = 0, and I subset of S := k[x(1), x(2), ..., x(n)] a Poisson ideal. It is well known that [dx(i), dx(j)] := d{x(i),x(j)} defines a Lie bracket on the A-module Omega(A vertical bar k) of Kahler differentials, making (A, Omega(A vertical bar k)) a Lie-Rinehart pair. If A is not regular, that is, Omega(A vertical bar k) is not projective, the cotangent complex L-A vertical bar k serves as a replacement for Omega(A vertical bar k). We prove that L-A vertical bar k is an L-infinity-algebroid compatible with the Lie-Rinehart pair (A, Omega(A vertical bar k)). The L-infinity-algebroid structure comes from a P-infinity-algebra structure on the resolvent of the morphism S -> A. We identify examples when this L-infinity-algebroid simplifies to a dg Lie algebroid, concentrating on cases where S is Z(>= 0)-graded and I and { , } are homogeneous.
引用
收藏
页码:11592 / 11644
页数:53
相关论文
共 61 条
  • [1] Alev J, 1998, ALGEBRA AND OPERATOR THEORY, P25
  • [2] [Anonymous], 1985, ASTERISQUE
  • [3] Avramov LL, 1998, PROG MATH, V166, P1
  • [4] JACOBIAN CRITERIA FOR COMPLETE-INTERSECTIONS - THE GRADED CASE
    AVRAMOV, LL
    HERZOG, J
    [J]. INVENTIONES MATHEMATICAE, 1994, 117 (01) : 75 - 88
  • [5] Subadditivity of syzygies of Koszul algebras
    Avramov, Luchezar L.
    Conca, Aldo
    Iyengar, Srikanth B.
    [J]. MATHEMATISCHE ANNALEN, 2015, 361 (1-2) : 511 - 534
  • [6] Bursztyn H, 2001, PROG THEOR PHYS SUPP, P26
  • [7] Campos R, 2019, J LIE THEORY, V29, P629
  • [8] SYMPLECTIC REDUCTION AT ZERO ANGULAR MOMENTUM
    Cape, Joshua
    Herbig, Hans-Christian
    Seaton, Christopher
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2016, 8 (01) : 13 - 34
  • [9] Relative formality theorem and quantisation of coisotropic submanifolds
    Cattaneo, Alberto S.
    Felder, Giovanni
    [J]. ADVANCES IN MATHEMATICS, 2007, 208 (02) : 521 - 548
  • [10] Collingwood D.H., 1993, NOSTRAND REINHOLD MA