Empirical Bayes Mean Estimation With Nonparametric Errors Via Order Statistic Regression on Replicated Data
被引:3
|
作者:
Ignatiadis, Nikolaos
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Stat, Sequoia Hall,390 Jane Stanford Way, Stanford, CA 94305 USAStanford Univ, Dept Stat, Sequoia Hall,390 Jane Stanford Way, Stanford, CA 94305 USA
Ignatiadis, Nikolaos
[1
]
Saha, Sujayam
论文数: 0引用数: 0
h-index: 0
机构:
Google Inc, Mountain View, CA USAStanford Univ, Dept Stat, Sequoia Hall,390 Jane Stanford Way, Stanford, CA 94305 USA
Saha, Sujayam
[2
]
Sun, Dennis L.
论文数: 0引用数: 0
h-index: 0
机构:
Calif Polytech State Univ San Luis Obispo, Dept Stat, San Luis Obispo, CA 93407 USAStanford Univ, Dept Stat, Sequoia Hall,390 Jane Stanford Way, Stanford, CA 94305 USA
Sun, Dennis L.
[3
]
Muralidharan, Omkar
论文数: 0引用数: 0
h-index: 0
机构:
Google Inc, Mountain View, CA USAStanford Univ, Dept Stat, Sequoia Hall,390 Jane Stanford Way, Stanford, CA 94305 USA
Muralidharan, Omkar
[2
]
机构:
[1] Stanford Univ, Dept Stat, Sequoia Hall,390 Jane Stanford Way, Stanford, CA 94305 USA
[2] Google Inc, Mountain View, CA USA
[3] Calif Polytech State Univ San Luis Obispo, Dept Stat, San Luis Obispo, CA 93407 USA
We study empirical Bayes estimation of the effect sizes of N units from K noisy observations on each unit. We show that it is possible to achieve near-Bayes optimal mean squared error, without any assumptions or knowledge about the effect size distribution or the noise. The noise distribution can be heteroscedastic and vary arbitrarily from unit to unit. Our proposal, which we call Aurora, leverages the replication inherent in the K observations per unit and recasts the effect size estimation problem as a general regression problem. Aurora with linear regression provably matches the performance of a wide array of estimators including the sample mean, the trimmed mean, the sample median, as well as James-Stein shrunk versions thereof. Aurora automates effect size estimation for Internet-scale datasets, as we demonstrate on data from a large technology firm.
机构:
Univ Calif San Francisco, Dept Med, Div HIV Infect Dis & Global Med, San Francisco, CA 94110 USA
Univ Illinois, Dept Stat, Champaign, IL USAUniv Calif San Francisco, Dept Med, Div HIV Infect Dis & Global Med, San Francisco, CA 94110 USA
Barbehenn, Alton
Zhao, Sihai Dave
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Stat, Champaign, IL USAUniv Calif San Francisco, Dept Med, Div HIV Infect Dis & Global Med, San Francisco, CA 94110 USA
机构:
Department of Mathematics, School of Sciences, Beijing Jiaotong UniversityDepartment of Mathematics, School of Sciences, Beijing Jiaotong University