Efficient utilization of waste marine clay for fine aggregate to develop sustainable and cost-effective strain-hardening cement-based composites

被引:9
|
作者
Chen, Wenhua [1 ,2 ,3 ]
Wang, Qiang [4 ]
Huang, Zhiyi [3 ]
Du, Hongjian [2 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Civil Engn & Architecture, Hangzhou 310018, Peoples R China
[2] Natl Univ Singapore, Dept Civil & Environm Engn, Singapore 117576, Singapore
[3] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Peoples R China
[4] Hebei Univ Technol, Sch Civil & Transportat Engn, Tianjin 300401, Peoples R China
关键词
Waste marine clay; Sustainable; Cost-effective; Cement -based composites; Tensile ductility; MECHANICAL-PROPERTIES; RIVER SAND; PERFORMANCE; CONCRETE; REPLACEMENT; DURABILITY; BEHAVIOR; IMPACT; CORROSION;
D O I
10.1016/j.conbuildmat.2024.135262
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The prevalent overreliance on silica sand within strain-hardening cement-based composites (SHCC) underscores the urgency to address the depletion of natural resource. To address this concern, a novel approach involving the utilization of waste marine clay (WMC), an underutilized construction waste residue, is explored. This study marks the first application of high-volume calcined WMC as a substitute for silica sand within sustainable and cost-effective strain-hardening cement-based composites (SC-SHCC). The investigation encompasses a comprehensive analysis of SC-SHCC, covering mechanical properties, hydration, shrinkage, and cost. The results showed that the integration of calcined WMC instead of silica sand had noticeable improvements in the mechanical properties of SC-SHCC due to the notable pozzolanic activity and filling effect of calcined WMC. The developed SC-SHCC replacing two-thirds of the silica sand with calcined WMC exhibited a compressive strength of 76.34 MPa, a tensile strength of 14.63 MPa, and a tensile strain capacity of 5.99%, which successfully pushed the performance of conventional SHCC. Key indicators such as compressive strength, flexural strength, and tensile strength exhibited promising enhancements as calcined WMC dosage increased. The incorporation of calcined WMC contributed to heightened ettringite formation, thereby improving the tensile strength, and tensile strain energy of SC-SHCC. Besides, SC-SHCC exhibited pronounced drying shrinkage, primarily attributable to the free water evaporation and capillary pore development associated with calcined WMC. Furthermore, substituting calcined WMC for silica sand led to reducing the costs within SC-SHCC production. Therefore, the findings of this study hold promise for advancing the field of SHCC while promoting the environmentally friendly utilization of waste materials.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Rheology and Its Relation to Strain-Hardening Properties of Strain-Hardening Cement-Based Composites
    Fares, Galal
    Khan, Mohammad Iqbal
    ACI MATERIALS JOURNAL, 2019, 116 (05) : 193 - 203
  • [2] Durability of strain-hardening cement-based composites (SHCC)
    Gideon P. A. G. van Zijl
    Folker H. Wittmann
    Byung H. Oh
    Petr Kabele
    Romildo D. Toledo Filho
    Eduardo M. R. Fairbairn
    Volker Slowik
    Atsuhisa Ogawa
    Hideki Hoshiro
    Viktor Mechtcherine
    Frank Altmann
    Michael D. Lepech
    Materials and Structures, 2012, 45 : 1447 - 1463
  • [3] Durability of strain-hardening cement-based composites (SHCC)
    van Zijl, Gideon P. A. G.
    Wittmann, Folker H.
    Oh, Byung H.
    Kabele, Petr
    Toledo Filho, Romildo D.
    Fairbairn, Eduardo M. R.
    Slowik, Volker
    Ogawa, Atsuhisa
    Hoshiro, Hideki
    Mechtcherine, Viktor
    Altmann, Frank
    Lepech, Michael D.
    MATERIALS AND STRUCTURES, 2012, 45 (10) : 1447 - 1463
  • [4] Influence of Aggregate Gradation on Mechanics Performance of Strain-hardening Cement-based Composites (SHCC)
    Tian Li
    Chen Jingru
    Zhao Tiejun
    Ding Zhu
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 207 - +
  • [5] Development of Strain-Hardening Cement-based Composites for the strengthening of masonry
    Bruedern, A. -E.
    Abecasis, D.
    Mechtcherine, V.
    CONCRETE REPAIR, REHABILITATION AND RETROFITTING II, 2009, : 327 - 328
  • [6] Water permeability of cracked strain-hardening cement-based composites
    Wagner, Christian
    Villmann, Beate
    Slowik, Volker
    Mechtcherine, Viktor
    CEMENT & CONCRETE COMPOSITES, 2017, 82 : 234 - 241
  • [7] Fatigue behaviour of strain-hardening cement-based composites (SHCC)
    Mueller, Steffen
    Mechtcherine, Viktor
    CEMENT AND CONCRETE RESEARCH, 2017, 92 : 75 - 83
  • [8] Use of Strain-Hardening Cement-Based Composites (SHCC) for Retrofitting
    Mueller, Steffen
    Mechtcherine, Viktor
    INTERNATIONAL CONFERENCE ON CONCRETE REPAIR, REHABILITATION AND RETROFITTING (ICCRRR 2018), 2018, 199
  • [9] Capillary absorption of cracked strain-hardening cement-based composites
    Wagner, Christian
    Villmann, Beate
    Slowik, Volker
    Mechtcherine, Viktor
    CEMENT & CONCRETE COMPOSITES, 2019, 97 : 239 - 247
  • [10] Behaviour of Strain-Hardening Cement-Based Composites Under High Strain Rates
    Mechtcherine, Viktor
    Silva, Flavio de Andrade
    Butler, Marko
    Zhu, Deju
    Mobasher, Barzin
    Gao, Shang-Lin
    Maeder, Edith
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2011, 9 (01) : 51 - 62