A Pedestrian Trajectory Prediction Method for Generative Adversarial Networks Based on Scene Constraints

被引:2
|
作者
Ma, Zhongli [1 ]
An, Ruojin [1 ]
Liu, Jiajia [1 ]
Cui, Yuyong [2 ]
Qi, Jun [3 ]
Teng, Yunlong [4 ]
Sun, Zhijun [5 ]
Li, Juguang [6 ]
Zhang, Guoliang [1 ]
机构
[1] Chengdu Univ Informat Technol, Coll Automat, Chengdu 610103, Peoples R China
[2] Southwest Inst Tech Phys, Chengdu 610041, Peoples R China
[3] Chengdu Univ Informat Technol, Coll Commun Engn, Chengdu 610225, Peoples R China
[4] Univ Elect Sci & Technol China, Coll Mech & Elect Engn, Chengdu 611731, Peoples R China
[5] Nucl Power Inst China, Chengdu 610005, Peoples R China
[6] Chengdu Emfuture Technol Co Ltd, Chengdu 611731, Peoples R China
关键词
scene constraint; pedestrian trajectory prediction; generative adversarial networks; self-attention mechanism; CARLA simulation;
D O I
10.3390/electronics13030628
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pedestrian trajectory prediction is one of the most important topics to be researched for unmanned driving and intelligent mobile robots to perform perceptual interaction with the environment. To solve the problem of the SGAN (social generative adversarial networks) model lacking an understanding of pedestrian interaction and scene constraints, this paper proposes a trajectory prediction method based on a scenario-constrained generative adversarial network. Firstly, a self-attention mechanism is added, which can integrate information at every moment. Secondly, mutual information is introduced to enhance the influence of latent code on the predicted trajectory. Finally, a new social pool is introduced into the original trajectory prediction model, and a scene edge extraction module is added to ensure the final output path of the model is within the passable area in line with the physical scene, which greatly improves the accuracy of trajectory prediction. Based on the CARLA (CAR Learning to Act) simulation platform, the improved model was tested on the public dataset and the self-built dataset. The experimental results showed that the average moving deviation was reduced by 26.4% and the final offset was reduced by 23.8%, which proved that the improved model could better solve the uncertainty of pedestrian turning decisions. The accuracy and stability of pedestrian trajectory prediction are improved while maintaining multiple modes.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Research on pedestrian trajectory prediction method based on social attention mechanism
    Li L.
    Zhou B.
    Lian J.
    Zhou Y.
    Tongxin Xuebao/Journal on Communications, 2020, 41 (06): : 175 - 183
  • [32] DSAL-GAN: Denoising Based Saliency Prediction with Generative Adversarial Networks
    Mukherjee, Prerana
    Sharma, Manoj
    Makwana, Megh
    Singh, Ajay Pratap
    Upadhyay, Avinash
    Trivedi, Akkshita
    Lall, Brejesh
    Chaudhury, Santanu
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 568 - 576
  • [33] A Binary Code Vulnerability Mining Method Based on Generative Adversarial Networks
    Lai, Ji
    Li, Shuo
    Yao, Qigui
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT III, 2022, 13340 : 639 - 650
  • [34] Infrared Target Simulation Method Based on Generative Adversarial Neural Networks
    Xie Jiangrong
    Li Fanming
    Wei Hong
    Li Bing
    ACTA OPTICA SINICA, 2019, 39 (03)
  • [35] Malware detection method based on image analysis and generative adversarial networks
    Liu, Yanhua
    Li, Jiaqi
    Liu, Baoxu
    Gao, Xiaoling
    Liu, Ximeng
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (22)
  • [36] Ensemble Deep Learning Classification Method Based on Generative Adversarial Networks
    Shen, Haoyuan
    Lin, Chenglong
    Ma, Yizhong
    Xie, En
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 46 - 53
  • [37] Blind Image Separation Method Based on Cascade Generative Adversarial Networks
    Jia, Fei
    Xu, Jindong
    Sun, Xiao
    Ma, Yongli
    Ni, Mengying
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [38] A Location Trajectory Privacy Protection Method Based on Generative Adversarial Network and Attention Mechanism
    Yang, Xirui
    Zhang, Chen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (03): : 3781 - 3804
  • [39] An Improved Method of Reservoir Facies Modeling Based on Generative Adversarial Networks
    Liu, Qingbin
    Liu, Wenling
    Yao, Jianpeng
    Liu, Yuyang
    Pan, Mao
    ENERGIES, 2021, 14 (13)
  • [40] An Image Style Diversified Synthesis Method Based on Generative Adversarial Networks
    Yang, Zujian
    Qiu, Zhao
    ELECTRONICS, 2022, 11 (14)