A Pedestrian Trajectory Prediction Method for Generative Adversarial Networks Based on Scene Constraints

被引:2
|
作者
Ma, Zhongli [1 ]
An, Ruojin [1 ]
Liu, Jiajia [1 ]
Cui, Yuyong [2 ]
Qi, Jun [3 ]
Teng, Yunlong [4 ]
Sun, Zhijun [5 ]
Li, Juguang [6 ]
Zhang, Guoliang [1 ]
机构
[1] Chengdu Univ Informat Technol, Coll Automat, Chengdu 610103, Peoples R China
[2] Southwest Inst Tech Phys, Chengdu 610041, Peoples R China
[3] Chengdu Univ Informat Technol, Coll Commun Engn, Chengdu 610225, Peoples R China
[4] Univ Elect Sci & Technol China, Coll Mech & Elect Engn, Chengdu 611731, Peoples R China
[5] Nucl Power Inst China, Chengdu 610005, Peoples R China
[6] Chengdu Emfuture Technol Co Ltd, Chengdu 611731, Peoples R China
关键词
scene constraint; pedestrian trajectory prediction; generative adversarial networks; self-attention mechanism; CARLA simulation;
D O I
10.3390/electronics13030628
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pedestrian trajectory prediction is one of the most important topics to be researched for unmanned driving and intelligent mobile robots to perform perceptual interaction with the environment. To solve the problem of the SGAN (social generative adversarial networks) model lacking an understanding of pedestrian interaction and scene constraints, this paper proposes a trajectory prediction method based on a scenario-constrained generative adversarial network. Firstly, a self-attention mechanism is added, which can integrate information at every moment. Secondly, mutual information is introduced to enhance the influence of latent code on the predicted trajectory. Finally, a new social pool is introduced into the original trajectory prediction model, and a scene edge extraction module is added to ensure the final output path of the model is within the passable area in line with the physical scene, which greatly improves the accuracy of trajectory prediction. Based on the CARLA (CAR Learning to Act) simulation platform, the improved model was tested on the public dataset and the self-built dataset. The experimental results showed that the average moving deviation was reduced by 26.4% and the final offset was reduced by 23.8%, which proved that the improved model could better solve the uncertainty of pedestrian turning decisions. The accuracy and stability of pedestrian trajectory prediction are improved while maintaining multiple modes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Social-Scene-Aware Generative Adversarial Networks for Pedestrian Trajectory Prediction
    Huang, Binhao
    Ma, Zhenwei
    Chen, Lianggangxu
    He, Gaoqi
    ADVANCES IN COMPUTER GRAPHICS, CGI 2021, 2021, 13002 : 190 - 201
  • [2] SISGAN: A Generative Adversarial Network Pedestrian Trajectory Prediction Model Combining Interaction Information and Scene Information
    Dou, Wanqing
    Lu, Lili
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [3] Vehicle Lane-Change Trajectory Prediction Model Based on Generative Adversarial Networks
    Wen H.
    Zhang W.
    Zhao S.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (05): : 32 - 40
  • [4] STI-GAN: Multimodal Pedestrian Trajectory Prediction Using Spatiotemporal Interactions and a Generative Adversarial Network
    Huang, Lei
    Zhuang, Jihui
    Cheng, Xiaoming
    Xu, Riming
    Ma, Hongjie
    IEEE ACCESS, 2021, 9 : 50846 - 50856
  • [5] Pedestrian trajectory prediction method based on pedestrian pose
    Wang R.
    Song X.
    Chen K.
    Gong K.
    Zhang J.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (07): : 1743 - 1754
  • [6] Pedestrian Trajectory Prediction Method Based on Information Fractals
    Yang T.
    Wang G.
    Lai J.
    Wang Y.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (02): : 527 - 537
  • [7] Dummy trajectory generation scheme based on generative adversarial networks
    Yang, Jingkang
    Yu, Xiaobo
    Meng, Weizhi
    Liu, Yining
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (11) : 8453 - 8469
  • [8] Dummy trajectory generation scheme based on generative adversarial networks
    Jingkang Yang
    Xiaobo Yu
    Weizhi Meng
    Yining Liu
    Neural Computing and Applications, 2023, 35 : 8453 - 8469
  • [9] Prediction Method of Multiple Related Time Series Based on Generative Adversarial Networks
    Wu, Weijie
    Huang, Fang
    Kao, Yidi
    Chen, Zhou
    Wu, Qi
    INFORMATION, 2021, 12 (02) : 1 - 16
  • [10] A new method based on generative adversarial networks for multivariate time series prediction
    Qin, Xiwen
    Shi, Hongyu
    Dong, Xiaogang
    Zhang, Siqi
    EXPERT SYSTEMS, 2024, 41 (12)