A New Kilohertz Gravitational-wave Feature from Rapidly Rotating Core-collapse Supernovae

被引:5
作者
Hsieh, He-Feng [1 ,2 ,3 ,4 ]
Cabezon, Ruben [5 ]
Ma, Li-Ting [3 ,4 ,6 ]
Pan, Kuo-Chuan [1 ,3 ,4 ,6 ,7 ]
机构
[1] Natl Taiwan Univ, Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[3] Natl Tsing Hua Univ, Inst Astron, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Ctr Informat & Computat Astron, Hsinchu 30013, Taiwan
[5] Univ Basel, Ctr Sci Comp sciCORE, Klingelbergstr 82, CH-4056 Basel, Switzerland
[6] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[7] Natl Tsing Hua Univ, Ctr Theory & Computat, Hsinchu 30013, Taiwan
关键词
EQUATION-OF-STATE; SMOOTHED PARTICLE HYDRODYNAMICS; ARMED SPIRAL INSTABILITY; POSSIBLE GRB PROGENITORS; 3-DIMENSIONAL SIMULATIONS; NEUTRINO-TRANSPORT; EXPLOSION; SIGNALS; EMISSION; MODELS;
D O I
10.3847/1538-4357/ad08c2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present self-consistent three-dimensional core-collapse supernova simulations of a rotating 20M circle dot progenitor model with various initial angular velocities from 0.0 to 4.0 rad s-1 using the smoothed particle hydrodynamics code SPHYNX and the grid-based hydrodynamics code FLASH. We identify two strong gravitational-wave features with peak frequencies of similar to 300 Hz and similar to 1.3 kHz in the first 100 ms postbounce. We demonstrate that these two features are associated with the m = 1 deformation from the proto-neutron star (PNS) modulation induced by the low-T/ divide W divide instability, regardless of the simulation code. The 300 Hz feature is present in models with an initial angular velocity between 1.0 and 4.0 rad s-1, while the 1.3 kHz feature is only present in a narrower range, from 1.5 to 3.5 rad s-1. We show that the 1.3 kHz signal originates from the high-density inner core of the PNS, and the m = 1 deformation triggers a strong asymmetric distribution of electron antineutrinos. In addition to the 300 Hz and 1.3 kHz features, we also observe one weaker but noticeable gravitational-wave feature from higher-order modes in the range between 1.5 and 3.5 rad s-1. Its initial peak frequency is around 800 Hz, and it gradually increases to 900-1000 Hz. Therefore, in addition to the gravitational bounce signal, the detection of the 300 Hz, 1.3 kHz, the higher-order mode, and even the related asymmetric emission of neutrinos could provide additional diagnostics for estimating the initial angular velocity of a collapsing core.
引用
收藏
页数:16
相关论文
共 88 条
[1]   Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Arai, Koya ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aso, Y. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. .
LIVING REVIEWS IN RELATIVITY, 2020, 23 (01)
[2]   Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves [J].
Abdikamalov, Ernazar ;
Gossan, Sarah ;
DeMaio, Alexandra M. ;
Ott, Christian D. .
PHYSICAL REVIEW D, 2014, 90 (04)
[3]   Gravitational-wave signals from 3D supernova simulations with different neutrino-transport methods [J].
Andresen, H. ;
Glas, R. ;
Janka, H-Th .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (03) :3552-3567
[4]   Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation [J].
Andresen, H. ;
Mueller, E. ;
Janka, H. -Th. ;
Summa, A. ;
Gill, K. ;
Zanolin, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (02) :2238-2253
[5]  
Bambi C., 2022, Handbook of Gravitational Wave Astronomy, P21, DOI DOI 10.1007/978-981-15-4702-7_21-1
[6]   Stability of standing accretion shocks, with an eye toward core-collapse supernovae [J].
Blondin, JM ;
Mezzacappa, A ;
DeMarino, C .
ASTROPHYSICAL JOURNAL, 2003, 584 (02) :971-980
[7]   Three-dimensional core-collapse supernovae with complex magnetic structures - II. Rotational instabilities and multimessenger signatures [J].
Bugli, M. ;
Guilet, J. ;
Foglizzo, T. ;
Obergaulinger, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (04) :5622-5634
[8]   Papaloizou-Pringle instability suppression by the magnetorotational instability in relativistic accretion discs [J].
Bugli, M. ;
Guilet, J. ;
Mueller, E. ;
Del Zanna, L. ;
Bucciantini, N. ;
Montero, P. J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (01) :108-120
[9]   Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport -: I.: Numerical method and results for a 15 M⊙ star [J].
Buras, R ;
Rampp, M ;
Janka, HT ;
Kifonidis, K .
ASTRONOMY & ASTROPHYSICS, 2006, 447 (03) :1049-U136
[10]   Core-collapse supernova explosion theory [J].
Burrows, A. ;
Vartanyan, D. .
NATURE, 2021, 589 (7840) :29-39