Two-dimensional AlB4/Al2B2: high-performance Dirac anode materials for sodium-ion batteries

被引:4
|
作者
Zou, Ru-Feng [1 ]
Ye, Xiao-Juan [2 ]
Zheng, Xiao-Hong [3 ]
Jia, Ran [4 ]
Liu, Chun-Sheng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[3] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[4] Jilin Univ, Inst Theoret Chem, Coll Chem, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-CAPACITY; BOROPHENE; NA; GRAPHENE;
D O I
10.1039/d3cp03649a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) have attracted much attention due to their abundant earth-reserves and low cost. Two-dimensional (2D) Dirac materials show great application prospects as anodes for SIBs because of their excellent electronic conductivity. We explore the performances of AlB4 (Al2B2) monolayers and bilayers as anodes for SIBs by using first-principles calculations. The AlB4 (Al2B2) monolayer exhibits a high theoretical storage capacity of 954.15 (709.17) mA h g(-1) and a low diffusion barrier of 0.36 (0.03) eV. The calculated average open-circuit voltage (0.68/0.18 V) falls within the acceptance range of 0.1-1.0 V for anode materials. The fully sodiated AlB4 (Al2B2) monolayer shows a tiny lattice expansion of 0.9% (2.4%), suggesting good reversibility. Furthermore, in comparison with the AlB4 (Al2B2) monolayer, the AlB4 (Al2B2) bilayer can provide stronger binding with Na on the outside surface. These results contribute to a better understanding of the AlB4 (Al2B2) monolayers and bilayers as potential high-performance anode materials for SIBs.
引用
收藏
页码:28814 / 28823
页数:10
相关论文
共 50 条
  • [41] Ultrathin MoS2 Nanosheets as Anode Materials for Sodium-Ion Batteries with Superior Performance
    Su, Dawei
    Dou, Shixue
    Wang, Guoxiu
    ADVANCED ENERGY MATERIALS, 2015, 5 (06)
  • [42] Facile synthesis of hybrid MoS2/graphene nanosheets as high-performance anode for sodium-ion batteries
    Rong Zhang
    Jinkai Wang
    Chao Li
    Ting Liu
    Tianhao Yao
    Lei Zhu
    Xiaogang Han
    Hongkang Wang
    Ionics, 2020, 26 : 711 - 717
  • [43] Construction of Sb2S3@SnS@C Tubular Heterostructures as High-Performance Anode Materials for Sodium-Ion Batteries
    Lin, Jian
    Yao, Luxi
    Zhang, Chenying
    Ding, Haoran
    Yuanhui
    Wu
    Li, Shuai
    Han, Jiajia
    Yue, Guanghui
    Peng, Dongliang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (33) : 11280 - 11289
  • [44] Prediction of Two-dimensional B9 as High-performance Anode Material for Li/Na/K-ion Batteries
    Song, Yi
    Di, Yaxin
    Wang, Shiyao
    Khazaei, Mohammad
    Wang, Junjie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (48) : 23129 - 23137
  • [45] MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium-Ion Batteries: The Role of the Two-Dimensional Heterointerface
    Xie, Xiuqiang
    Ao, Zhimin
    Su, Dawei
    Zhang, Jinqiang
    Wang, Guoxiu
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (09) : 1393 - 1403
  • [46] Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries
    Ying, Hangjun
    Han, Wei-Qiang
    ADVANCED SCIENCE, 2017, 4 (11):
  • [47] N/S-Co-Doped Porous Carbon Sheets Derived from Bagasse as High-Performance Anode Materials for Sodium-Ion Batteries
    Wang, Lili
    Hu, Lei
    Yang, Wei
    Liang, Dewei
    Liu, Lingli
    Liang, Sheng
    Yang, Caoyu
    Fang, Zezhong
    Dong, Qiang
    Deng, Chonghai
    NANOMATERIALS, 2019, 9 (09)
  • [48] Prediction of SiS2 and SiSe2 as promising anode materials for sodium-ion batteries
    Wang, Xianpeng
    Wang, Lu
    Li, Youyong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (21) : 13189 - 13193
  • [49] Facile processing of red phosphorous-carbon composites as high-performance anode materials for sodium-ion batteries
    Shaikh, Shoyebmohamad F.
    Sayyed, Mosim B.
    Mane, Rajaram S.
    More, Pravin S.
    Khollam, Yogesh B.
    Garje, Anil D.
    Hsu, Hsiu-Ling
    Al-Enizi, Abdullah M.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 955
  • [50] Carbon shell-coated mackinawite FeS platelets as anode materials for high-performance sodium-ion batteries
    Lim, Hyungsub
    Kim, Seunghyun
    Kim, Jung Hoon
    Lee, Hyo Chan
    Lee, Giwon
    Park, Jong Hwan
    Han, Joong Tark
    Cho, Kilwon
    CHEMICAL ENGINEERING JOURNAL, 2023, 458