Two-dimensional AlB4/Al2B2: high-performance Dirac anode materials for sodium-ion batteries

被引:4
|
作者
Zou, Ru-Feng [1 ]
Ye, Xiao-Juan [2 ]
Zheng, Xiao-Hong [3 ]
Jia, Ran [4 ]
Liu, Chun-Sheng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[3] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[4] Jilin Univ, Inst Theoret Chem, Coll Chem, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-CAPACITY; BOROPHENE; NA; GRAPHENE;
D O I
10.1039/d3cp03649a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) have attracted much attention due to their abundant earth-reserves and low cost. Two-dimensional (2D) Dirac materials show great application prospects as anodes for SIBs because of their excellent electronic conductivity. We explore the performances of AlB4 (Al2B2) monolayers and bilayers as anodes for SIBs by using first-principles calculations. The AlB4 (Al2B2) monolayer exhibits a high theoretical storage capacity of 954.15 (709.17) mA h g(-1) and a low diffusion barrier of 0.36 (0.03) eV. The calculated average open-circuit voltage (0.68/0.18 V) falls within the acceptance range of 0.1-1.0 V for anode materials. The fully sodiated AlB4 (Al2B2) monolayer shows a tiny lattice expansion of 0.9% (2.4%), suggesting good reversibility. Furthermore, in comparison with the AlB4 (Al2B2) monolayer, the AlB4 (Al2B2) bilayer can provide stronger binding with Na on the outside surface. These results contribute to a better understanding of the AlB4 (Al2B2) monolayers and bilayers as potential high-performance anode materials for SIBs.
引用
收藏
页码:28814 / 28823
页数:10
相关论文
共 50 条
  • [11] MXene-based anode materials for high performance sodium-ion batteries
    Li, Junfeng
    Liu, Hao
    Shi, Xudong
    Li, Xiang
    Li, Wuyong
    Guan, Enguang
    Lu, Ting
    Pan, Likun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 658 : 425 - 440
  • [12] Ab Initio Prediction of Two-Dimensional GeSiBi2 Monolayer as Potential Anode Materials for Sodium-Ion Batteries
    Li, Lingxia
    Zhang, Wenbo
    Zhang, Jiayin
    Liu, Di
    Li, Junchen
    Ren, Junqiang
    Guo, Xin
    Lu, Xuefeng
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 40111 - 40122
  • [13] Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries
    Zhao, Xin
    Vail, Sean A.
    Lu, Yuhao
    Song, Jie
    Pan, Wei
    Evans, David R.
    Lee, Jong-Jan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) : 13871 - 13878
  • [14] Amorphous Germanium Nanomaterials as High-Performance Anode for Lithium and Sodium-Ion Batteries
    Liu, Chao
    Jiang, Yiming
    Meng, Chao
    Liu, Xiaocun
    Li, Bo
    Xia, Shengqing
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (11)
  • [15] Ti2PTe2 monolayer: a promising two-dimensional anode material for sodium-ion batteries
    Liu, Jie
    Qiao, Man
    Zhu, Xiaorong
    Jing, Yu
    Li, Yafei
    RSC ADVANCES, 2019, 9 (27) : 15536 - 15541
  • [16] Honeycomb-Structured MoSe2/rGO Composites as High-Performance Anode Materials for Sodium-Ion Batteries
    Li, Zhuanxia
    Yu, Lianghao
    Tao, Xin
    Li, Yun
    Zhang, Linlin
    He, Xuedong
    Chen, Yan
    Xiong, Sha
    Hu, Wei
    Li, Jun
    Wang, Jichang
    Jin, Huile
    Wang, Shun
    SMALL, 2024, 20 (06)
  • [17] Excellent Electrolyte Wettability and High Energy Density of B2S as a Two-Dimensional Dirac Anode for Non-Lithium-Ion Batteries
    Lei, Shufei
    Chen, Xianfei
    Xiao, Beibei
    Zhang, Wentao
    Liu, Jia
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (32) : 28830 - 28840
  • [18] Germanium telluride: Layered high-performance anode for sodium-ion batteries
    Sung, Geon-Kyu
    Nam, Ki-Hun
    Choi, Jeong-Hee
    Park, Cheol-Min
    ELECTROCHIMICA ACTA, 2020, 331
  • [19] High-performance tin dioxide/graphdiyne composite anode materials for lithium/sodium-ion batteries
    Wang, Zhe
    Zhao, Zhenzhen
    Li, Tiantian
    Yuan, Yiming
    Shen, Xiangyan
    Zhou, Jin
    JOURNAL OF POWER SOURCES, 2025, 638
  • [20] Tannin-based hard carbons as high-performance anode materials for sodium-ion batteries
    Tonnoir, H.
    Huo, D.
    Canevesi, R. L. S.
    Fierro, V
    Celzard, A.
    Janot, R.
    MATERIALS TODAY CHEMISTRY, 2022, 23