Two-dimensional AlB4/Al2B2: high-performance Dirac anode materials for sodium-ion batteries

被引:4
|
作者
Zou, Ru-Feng [1 ]
Ye, Xiao-Juan [2 ]
Zheng, Xiao-Hong [3 ]
Jia, Ran [4 ]
Liu, Chun-Sheng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[3] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[4] Jilin Univ, Inst Theoret Chem, Coll Chem, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-CAPACITY; BOROPHENE; NA; GRAPHENE;
D O I
10.1039/d3cp03649a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) have attracted much attention due to their abundant earth-reserves and low cost. Two-dimensional (2D) Dirac materials show great application prospects as anodes for SIBs because of their excellent electronic conductivity. We explore the performances of AlB4 (Al2B2) monolayers and bilayers as anodes for SIBs by using first-principles calculations. The AlB4 (Al2B2) monolayer exhibits a high theoretical storage capacity of 954.15 (709.17) mA h g(-1) and a low diffusion barrier of 0.36 (0.03) eV. The calculated average open-circuit voltage (0.68/0.18 V) falls within the acceptance range of 0.1-1.0 V for anode materials. The fully sodiated AlB4 (Al2B2) monolayer shows a tiny lattice expansion of 0.9% (2.4%), suggesting good reversibility. Furthermore, in comparison with the AlB4 (Al2B2) monolayer, the AlB4 (Al2B2) bilayer can provide stronger binding with Na on the outside surface. These results contribute to a better understanding of the AlB4 (Al2B2) monolayers and bilayers as potential high-performance anode materials for SIBs.
引用
收藏
页码:28814 / 28823
页数:10
相关论文
共 50 条
  • [1] Two dimensional AlB4 as high-performance anode material for Li/ Na-ion batteries
    Ma, Shihao
    Zhang, Hui
    Cheng, Zishuang
    Xie, Xinjian
    Zhang, Xiaoming
    Liu, Guodong
    Chen, Guifeng
    APPLIED SURFACE SCIENCE, 2024, 648
  • [2] Two-dimensional metallic Be2Al monolayer as a potential anode material for lithium-ion/sodium-ion batteries
    Liu, Man
    Liu, Ying
    Jin, Lei
    Liu, Cong
    Dai, Xuefang
    Zhang, Ting-Ting
    Zhang, Xiaoming
    Liu, Guodong
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [3] Two-dimensional materials as anodes for sodium-ion batteries
    Chang, Y-M
    Lin, H-W
    Li, L-J
    Chen, H-Y
    MATERIALS TODAY ADVANCES, 2020, 6
  • [4] Novel two-dimensional SiC2 monolayer with potential as a superior anode for sodium-ion batteries
    Li, Chaolan
    Wang, Xiao
    Zheng, Xingrui
    Yuan, Zhentao
    Wang, Yuan
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (39) : 18406 - 18416
  • [5] MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Yu, Chuanming
    Jiao, Lifang
    Chen, Jun
    NANO LETTERS, 2016, 16 (05) : 3321 - 3328
  • [6] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    SMALL, 2015, 11 (04) : 473 - 481
  • [7] Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries
    Xie, Xiuqiang
    Wang, Shijian
    Kretschmer, Katja
    Wang, Guoxiu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 499 : 17 - 32
  • [8] Hexagonal FeNi2Se4@C Nanoflakes as High Performance Anode Materials for Sodium-ion Batteries
    Ma Cui
    Qiu Licheng
    Bao Jian
    Zhou Yongning
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2021, 37 (02) : 318 - 322
  • [9] Rational-designed high-performance anode materials for sodium-ion batteries: a review
    Wang, Jianzhi
    Li, Jiajia
    Zhang, Qi
    Du, Wei
    Abo-Dief, Hala M.
    Melhi, Saad
    Sellami, Rahma
    Guo, Jiang
    Hou, Chuanxin
    Sun, Xueqin
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (04)
  • [10] Hierarchical Vanadium Pentoxide Spheres as High-Performance Anode Materials for Sodium-Ion Batteries
    Su, Dawei
    Dou, Shixue
    Wang, Guoxiu
    CHEMSUSCHEM, 2015, 8 (17) : 2877 - 2882