Development, External Validation, and Visualization of Machine Learning Models for Predicting Occurrence of Acute Kidney Injury after Cardiac Surgery

被引:4
作者
Shao, Jiakang [1 ]
Liu, Feng [2 ]
Ji, Shuaifei [1 ]
Song, Chao [1 ,3 ]
Ma, Yan [1 ]
Shen, Ming [4 ]
Sun, Yuntian [1 ,3 ]
Zhu, Siming [1 ,3 ]
Guo, Yilong [1 ]
Liu, Bing [5 ]
Wu, Yuanbin [1 ,3 ]
Qin, Handai [1 ]
Lai, Shengwei [1 ]
Fan, Yunlong [1 ,3 ]
机构
[1] Med Sch Chinese PLA, Beijing 100853, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Dept Vasc & Endovasc Surg, Med Ctr 1, Beijing 100853, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, Dept Cardiovasc Surg, Med Ctr 1, Beijing 100853, Peoples R China
[4] Hebei Med Univ, Dept Cardiovasc Med, Hosp 1, Shijiazhuang 050000, Hebei, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Dept Cardiovasc Surg, Med Ctr 6, Beijing 100048, Peoples R China
关键词
acute kidney injury; cardiac surgery; machine learning; prediction model; precision medicine; RENAL REPLACEMENT THERAPY; RISK; OUTCOMES; FAILURE;
D O I
10.31083/j.rcm2408229
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a major complication that results in short-and long-term mortality among patients. Here, we adopted machine learning algorithms to build prediction models with the overarching goal of identi-fying patients who are at a high risk of such unfavorable kidney outcomes. Methods: A total of 1686 patients (development cohort) and 422 patients (validation cohort), with 126 pre-and intra-operative variables, were recruited from the First Medical Centre and the Sixth Medical Centre of Chinese PLA General Hospital in Beijing, China, respectively. Analyses were performed using six machine learn-ing techniques, namely K-nearest neighbor, logistic regression, decision tree, random forest (RF), support vector machine, and neural network, and the APPROACH score, a previously established risk score for CSA-AKI. For model tuning, optimal hyperparameter was achieved by using GridSearch with 5-fold cross-validation from the scikit-learn library. Model performance was externally assessed via the receiver operating characteristic (ROC) and decision curve analysis (DCA). Explainable machine learning was performed using the Python SHapley Additive exPlanation (SHAP) package and Seaborn library, which allow the calculation of marginal contributory SHAP value. Results: 637 patients (30.2%) developed CSA-AKI within seven days after surgery. In the external validation, the RF classifier exhibited the best performance among the six machine learning techniques, as shown by the ROC curve and DCA, while the traditional APPROACH risk score showed a relatively poor performance. Further analysis found no specific causative factor contributing to the development of CSA-AKI; rather, the development of CSA-AKI appeared to be a complex process resulting from a complex interplay of multiple risk factors. The SHAP summary plot illustrated the positive or negative contribution of RF-top 20 variables and extrapolated risk of developing CSA-AKI at individual levels. The Seaborn library showed the effect of each single feature on the model output of the RF prediction. Conclusions: Efficient machine learning approaches were successfully established to predict patients with a high probability of developing acute kidney injury after cardiac surgery. These findings are expected to help clinicians to optimize treatment strategies and minimize postoperative complications. Clinical Trial Registration: The study protocol was registered at the ClinicalTrials Registration System (https://www.clinicaltrials.gov/, #NCT04966598) on July 26, 2021.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Image-based profiling for drug discovery: due for a machine-learning upgrade? [J].
Chandrasekaran, Srinivas Niranj ;
Ceulemans, Hugo ;
Boyd, Justin D. ;
Carpenter, Anne E. .
NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (02) :145-159
[2]   Left Atrial Diameter and Albumin with Renal Outcomes in Chronic Kidney Disease [J].
Chen, Szu-Chia ;
Chang, Jer-Ming ;
Tsai, Yi-Chun ;
Huang, Jiun-Chi ;
Su, Ho-Ming ;
Hwang, Shang-Jyh ;
Chen, Hung-Chun .
INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2013, 10 (05) :575-584
[3]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[4]   eDoctor: machine learning and the future of medicine [J].
Handelman, G. S. ;
Kok, H. K. ;
Chandra, R. V. ;
Razavi, A. H. ;
Lee, M. J. ;
Asadi, H. .
JOURNAL OF INTERNAL MEDICINE, 2018, 284 (06) :603-619
[5]   Left Atrial Size and Function Role in Prognosis [J].
Hoit, Brian D. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 63 (06) :493-505
[6]   Global Incidence and Outcomes of Adult Patients With Acute Kidney Injury After Cardiac Surgery: A Systematic Review and Meta-Analysis [J].
Hu, Jiachang ;
Chen, Rongyi ;
Liu, Shaopeng ;
Yu, Xiaofang ;
Zou, Jianzhou ;
Ding, Xiaoqiang .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2016, 30 (01) :82-89
[7]   Association of QRS duration with left ventricular structure and function and risk of heart failure in middle-aged and older adults: the Multi-Ethnic Study of Atherosclerosis (MESA) [J].
Ilkhanoff, Leonard ;
Liu, Kiang ;
Ning, Hongyan ;
Nazarian, Saman ;
Bluemke, David A. ;
Soliman, Elsayed Z. ;
Lloyd-Jones, Donald M. .
EUROPEAN JOURNAL OF HEART FAILURE, 2012, 14 (11) :1285-1292
[8]   Validation of Four Prediction Scores for Cardiac Surgery-Associated Acute Kidney Injury in Chinese Patients [J].
Jiang, Wuhua ;
Xu, Jiarui ;
Shen, Bo ;
Wang, Chunsheng ;
Teng, Jie ;
Ding, Xiaoqiang .
BRAZILIAN JOURNAL OF CARDIOVASCULAR SURGERY, 2017, 32 (06) :481-486
[9]   Dynamic Predictive Scores for Cardiac Surgery-Associated Acute Kidney Injury [J].
Jiang, Wuhua ;
Teng, Jie ;
Xu, Jiarui ;
Shen, Bo ;
Wang, Yimei ;
Fang, Yi ;
Zou, Zhouping ;
Jin, Jifu ;
Zhuang, Yamin ;
Liu, Lan ;
Luo, Zhe ;
Wang, Chunsheng ;
Ding, Xiaoqiang .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (08)
[10]   Big Data in Nephrology [J].
Kaur, Navchetan ;
Bhattacharya, Sanchita ;
Butte, Atul J. .
NATURE REVIEWS NEPHROLOGY, 2021, 17 (10) :676-687