Factor modeling of multivariate time series: A frequency components approach

被引:1
|
作者
Sundararajan, Raanju R. [1 ]
机构
[1] Southern Methodist Univ, Dept Stat Sci, Dallas, TX 75205 USA
关键词
Dimension reduction; Factor model; fMRI time series; Multivariate time series; Resting-state network; Spectral matrix; PRINCIPAL-COMPONENTS; NUMBER; CONNECTIVITY;
D O I
10.1016/j.jmva.2023.105202
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A frequency domain factor model method for multivariate stationary time series is proposed. The dimension reduction framework aims to find a lower-dimensional mul-tivariate stationary factor series. Frequency components of the observed series are assumed to be linearly generated by the corresponding frequency components of a latent factor series using frequency-specific factor loadings matrices. These loadings matrices are then estimated using an eigendecomposition of symmetric non-negative definite matrices involving the real and imaginary parts of the spectral matrix. The factor dimension is estimated using nonparametric bootstrap tests. Consistency results concerning the estimation of eigenvalues, eigenvectors, factor loadings matrices and the factor dimension are provided. The numerical performance of the proposed method is illustrated through simulation examples. An application to modeling resting-state fMRI time series from autism individuals is demonstrated where a frequency-specific factor analysis helps understand functional connectivity.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On testing for nonlinearity in multivariate time series
    Psaradakis, Zacharias
    Vavra, Marian
    ECONOMICS LETTERS, 2014, 125 (01) : 1 - 4
  • [22] Detecting direct causality in multivariate time series: A comparative study
    Papana, Angeliki
    Siggiridou, Elsa
    Kugiumtzis, Dimitris
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 99
  • [23] Factor Modeling for High Dimensional Time Series
    Lam, Clifford
    Yao, Qiwei
    Bathia, Neil
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 203 - 207
  • [24] A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method
    Reisen, Valderio Anselmo
    Levy-Leduc, Celine
    Monte, Edson Zambon
    Bondon, Pascal
    STATISTICAL PAPERS, 2024, 65 (05) : 2865 - 2886
  • [25] COMMON SEASONALITY IN MULTIVARIATE TIME SERIES
    Nieto, Fabio H.
    Pena, Daniel
    Saboya, Dagoberto
    STATISTICA SINICA, 2016, 26 (04) : 1389 - 1410
  • [26] Supervised factor modeling for high-dimensional linear time series
    Huang, Feiqing
    Lu, Kexin
    Zheng, Yao
    Li, Guodong
    JOURNAL OF ECONOMETRICS, 2025, 249
  • [27] Multivariate Time Series Imputation: An Approach Based on Dictionary Learning
    Zheng, Xiaomeng
    Dumitrescu, Bogdan
    Liu, Jiamou
    Giurcaneanu, Ciprian Doru
    ENTROPY, 2022, 24 (08)
  • [28] Outlier detection for multivariate time series: A functional data approach
    Lopez-Oriona, Angel
    Vilar, Jose A.
    KNOWLEDGE-BASED SYSTEMS, 2021, 233
  • [29] A Novel LSTM Approach for Asynchronous Multivariate Time Series Prediction
    Ma, King
    Leung, Henry
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [30] Time and frequency-domain feature fusion network for multivariate time series classification
    Lei, Tianyang
    Li, Jichao
    Yang, Kewei
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252