Molecular-level insights into pH regulation of cation adsorption and exchange at clay particle edges

被引:5
|
作者
Yang, Sen [1 ,2 ]
Liu, Xiantang [1 ,2 ]
Yang, Gang [1 ,2 ,3 ]
机构
[1] Southwest Univ, Coll Resources & Environm, Chongqing 400715, Peoples R China
[2] Southwest Univ, Chongqing Key Lab Soil Multiscale Interfacial Proc, Chongqing 400715, Peoples R China
[3] Zhejiang Ocean Univ, Sch Petrochem Engn & Environm, Dept Chem Engn, Zhoushan 316022, Zhejiang, Peoples R China
关键词
Clay particle edge; pH; Selective adsorption; Heavy metal; Ion exchange; DYNAMICS SIMULATION; SURFACE COMPLEXATION; COMPETITIVE SORPTION; CESIUM ADSORPTION; METAL-CATIONS; HEAVY-METALS; FORCE-FIELD; MONTMORILLONITE; LEAD; KAOLINITE;
D O I
10.1016/j.clay.2022.106789
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Clay particle edges are often adsorption and catalytic centers while performances are strongly pH-dependent. Microscopic understanding of adsorption of single (Na+, K+, Cs+, Pb2+) and binary (Na+/Cs+, Na+/K+, K+/ Pb2+, Na+/Pb2+) metal ions by montmorillonite particle edges under various pH conditions is addressed by molecular dynamics simulations, and mechanisms regarding how pH regulates adsorption of metal ions, ionspecific effects, impacts of co-ions, thermodynamics and kinetics of ion exchange, and immobilization of heavy metals are unraveled. Under all pH conditions, Na+ and Pb2+ with smaller ionic radii have much higher inner-sphere adsorption densities than K+ and Cs+, and pH elevation generates new adsorption configurations that greatly promote adsorption. The promoting extent is apparently larger for Na+ and Pb2+, while ion-specific sequence (Na+ > K+ > Cs+) remains, which is applicable to single and binary metal ions. Impacts of co-ions onto adsorption rely on their identities and become magnified at higher pH although with consistent trends at all pH conditions; e.g., Na+ always inhibits Pb2+ adsorption while the degree of inhibition is larger due to pH elevation. Whether to promote or suppress adsorption by co-ions can be predicted from relative adsorption preference (Na+ > Pb2+ > K+ > Cs+). Stronger competitive adsorption occurs for binary Na+/Pb2+ than other Aa+/Bb+ ions and for the particle edges than basal and interlayer surfaces. As indicated by selectivity coefficients, montmorillonite particle edges are always Na+-selective, while pH elevation significantly enhances Pb2+ selectivity. Specific adsorption at clay particle edges emerges at lower pH for Na+ than Pb2+ (5.3 vs. 6.9) and increases at higher pH, while the increasing extent is larger for Pb2+, indicating pH elevation favors the immobilization of heavy metals. Results significantly enrich the knowledge about the adsorption/exchange of metal ions and the immobilization of heavy metals by clay minerals.
引用
收藏
页数:10
相关论文
共 27 条
  • [21] Molecular-Level Insights into Size-Dependent Stabilization Mechanism of Gold Nanoparticles in 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid
    Fu, Fangjia
    Li, Yunzhi
    Yang, Zhen
    Zhou, Guobing
    Huang, Yiping
    Wan, Zheng
    Chen, Xiangshu
    Hu, Na
    Li, Wei
    Huang, Liangliang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) : 523 - 532
  • [22] Molecular-Level Insights into the Improvement Mechanism of the Bonding Agent MAPO on the Mechanical Properties of the AP/HTPB-TDI Cross-Linked System
    Zhang, Junjie
    Luo, Peicheng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (48) : 20689 - 20701
  • [23] Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: Experimental results and molecular-level insights
    Chaouiki, A.
    Lgaz, H.
    Salghi, R.
    Chafiq, M.
    Oudda, H.
    Shubhalaxmi
    Bhat, K. S.
    Cretescu, I
    Ali, I. H.
    Marzouki, R.
    Chung, I-M
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 588
  • [24] Multiple interactions steered high affinity toward PFAS on ultrathin layered rare-earth hydroxide nanosheets: Remediation performance and molecular-level insights
    Tan, Xianjun
    Jiang, Zhenying
    Ding, Wenhui
    Zhang, Mingkun
    Huang, Yuxiong
    WATER RESEARCH, 2023, 230
  • [25] Fe(II)-Na(I)-Ca(II) Cation Exchange on Montmorillonite in Chloride Medium: Evidence for Preferential Clay Adsorption of Chloride – Metal Ion Pairs in Seawater
    Laurent Charlet
    Christophe Tournassat
    Aquatic Geochemistry, 2005, 11 : 115 - 137
  • [26] Fe(II)-Na(I)-Ca(II) cation exchange on montmorillonite in chloride medium: Evidence for preferential clay adsorption of chloride - Metal ion pairs in seawater
    Charlet, L
    Tournassat, C
    AQUATIC GEOCHEMISTRY, 2005, 11 (02) : 115 - 137
  • [27] Paving the Way for the Molecular-Level Design of Adsorbents for Carbon Capture: A Quantum-Chemical Investigation of the Adsorption of CO2 and N2 on Pure-Silica Chabazite
    Pinheiro Barbosa, Antonio Claudio
    Esteves, Pierre Mothe
    Chaer Nascimento, Marco Antonio
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (35) : 19314 - 19320