SAR Coherent Change Detection With Variational Expectation Maximization

被引:0
|
作者
Tucker, David [1 ]
Ash, Joshua N. [2 ]
Potter, Lee C. [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Wright State Univ, Dept Elect Engn, Dayton, OH 45435 USA
基金
美国国家科学基金会;
关键词
Coherence; Synthetic aperture radar; Estimation; Bayes methods; Radar polarimetry; Data models; Charge coupled devices; Change detection; contrastive divergence; Markov random fields (MRFs); synthetic aperture radar (SAR); variational inference; MARKOV RANDOM-FIELDS; MAXIMUM-LIKELIHOOD; INTERFEROMETRY; INFERENCE;
D O I
10.1109/TAES.2022.3213634
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article addresses the problem of coherent change detection in repeat-pass synthetic aperture radar (SAR) imagery. A Bayesian approach is formulated as an alternative to conventional window-based change detection statistics that entail losses to spatial resolution. The proposed approach assigns prior distributions to the unobserved model variables to exploit spatial structure both in the geophysical scattering qualities of the scene and among the scene disturbances that take place between the passes. Variational expectation maximization is used to efficiently approximate the posterior distribution of the latent variables and the prior model hyperparameters. Experiments on simulated and measured interferometric SAR data pairs indicate the effectiveness of the proposed change detection method and highlight improvements over traditional window-based approaches.
引用
收藏
页码:2163 / 2175
页数:13
相关论文
共 50 条
  • [1] A genetic expectation-maximization method for unsupervised change detection in multitemporal SAR imagery
    Bazi, Yakoub
    Melgani, Farid
    Bruzzone, Lorenzo
    Vernazza, Gianni
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (24) : 6591 - 6610
  • [2] GLAUCOMA PROGRESSION DETECTION USING VARIATIONAL EXPECTATION MAXIMIZATION ALGORITHM
    Belghith, Akram
    Balasubramanian, Madhusudhanan
    Bowd, Christopher
    Weinreb, Robert N.
    Zangwill, Linda M.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 876 - 879
  • [3] Incorporating global-local a Priori knowledge into expectation-maximization for SAR image change detection
    Jia, Meng
    Zhao, ZhiQiang
    Huo, Lina
    Chen, Hao
    Qiu, Yuan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (02) : 734 - 758
  • [4] Coherent Change Detection for Multipass SAR
    Monti-Guarnieri, Andrea Virgilio
    Brovelli, Maria Antonia
    Manzoni, Marco
    D'Alessandro, Mauro Mariotti
    Molinari, Monia Elisa
    Oxoli, Daniele
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (11): : 6811 - 6822
  • [5] Bayesian and Expectation Maximization methods for multivariate change point detection
    Keshavarz, Marziyeh
    Huang, Biao
    COMPUTERS & CHEMICAL ENGINEERING, 2014, 60 : 339 - 353
  • [6] Expectation Maximization Approach to Gross Error and Change Point Detection
    Keshavarz, Marziyeh
    Huang, Biao
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2013, : 586 - 591
  • [7] Prediction of Coherent Change Detection Performance in SAR
    Bennett, A. J.
    Blacknell, D.
    Martin, K.
    Andre, D. B.
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XVIII, 2011, 8051
  • [8] Unsupervised Change Detection With Expectation-Maximization-Based Level Set
    Hao, Ming
    Shi, Wenzhong
    Zhang, Hua
    Li, Chang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 210 - 214
  • [9] Hyperspectral Image Clustering based on Variational Expectation Maximization
    Jiao, Yuchen
    Ma, Yirong
    Gu, Yuantao
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [10] A variational change detection method for multitemporal SAR images
    Chen, Yin
    Cremers, Armin B.
    Cao, Zhiguo
    REMOTE SENSING LETTERS, 2014, 5 (04) : 342 - 351