Taking ACTION: A Prognostic Tool for Pediatric Ventricular Assist Device Mortality

被引:5
作者
Boucek, Katerina [1 ,8 ]
Alzubi, Anaam [2 ]
Zafar, Farhan [2 ]
O'Connor, Matthew J. [3 ]
Mehegan, Mary [4 ]
Mokshagundam, Deepa [4 ]
Davies, Ryan R. [5 ]
Adachi, Iki [6 ]
Lorts, Angela [2 ]
Rosenthal, David N. [7 ]
机构
[1] Ocshner Hosp Children, Pediat Cardiol, Los Angeles, CA USA
[2] Cincinnati Childrens Hosp, Cardiac Surg, Cincinnati, OH USA
[3] Childrens Hosp Philadelphia, Pediat Cardiol, Philadelphia, PA USA
[4] St Louis Childrens Hosp, Pediat Cardiol, St Louis, MO USA
[5] UT Southwestern Med Ctr & Childrens Hlth, Cardiovasc & Thorac Surg, Dallas, TX USA
[6] Texas Childrens Hosp, Surg & Pediat, Houston, TX USA
[7] Stanford Univ, Pediat Cardiol, Palo Alto, CA USA
[8] Ocshner Hosp Children, Pediat Cardiol, 1514 Jefferson Hwy, Jefferson, LA 70121 USA
关键词
congenital heart disease; machine learning; pediatrics; ventricular assist devices; WAITING-LIST MORTALITY; HEART-TRANSPLANTATION; BRIDGE; REGISTRY; SUPPORT;
D O I
10.1097/MAT.0000000000001899
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We sought to develop a contemporary risk assessment tool for use in pediatric ventricular assist device (VAD) candidates to estimate risk for mortality on the device using readily available preimplantation clinical data. Training and testing datasets were created from Advanced Cardiac Therapies Improving Outcomes Network (ACTION) registry data on patients supported with a VAD from 2012 to 2021. Potential risk factors for mortality were assessed and incorporated into a simplified risk prediction model utilizing an open-source, gradient-boosted decision tree machine learning library, known as random forest. Predictive performance was assessed by the area under the receiver operating characteristic curve in the testing dataset. Nine significant risk factors were included in the final predictive model which demonstrated excellent discrimination with an area under the curve of 0.95. In addition to providing a framework for establishing pediatric-specific risk profiles, our model can help inform team expectations, guide optimal patient selection, and ultimately improve patient outcomes.
引用
收藏
页码:602 / 609
页数:8
相关论文
共 21 条
  • [1] Improving risk prediction in heart failure using machine learning
    Adler, Eric D.
    Voors, Adriaan A.
    Klein, Liviu
    Macheret, Fima
    Braun, Oscar O.
    Urey, Marcus A.
    Zhu, Wenhong
    Sama, Iziah
    Tadel, Matevz
    Campagnari, Claudio
    Greenberg, Barry
    Yagil, Avi
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) : 139 - 147
  • [2] Berlin Heart EXCOR Pediatric Ventricular Assist Device for Bridge to Heart Transplantation in US Children
    Almond, Christopher S.
    Morales, David L.
    Blackstone, Eugene H.
    Turrentine, Mark W.
    Imamura, Michiaki
    Massicotte, M. Patricia
    Jordan, Lori C.
    Devaney, Eric J.
    Ravishankar, Chitra
    Kanter, Kirk R.
    Holman, William
    Kroslowitz, Robert
    Tjossem, Christine
    Thuita, Lucy
    Cohen, Gordon A.
    Buchholz, Holger
    St Louis, James D.
    Khanh Nguyen
    Niebler, Robert A.
    Walters, Henry L., III
    Reemtsen, Brian
    Wearden, Peter D.
    Reinhartz, Olaf
    Guleserian, Kristine J.
    Mitchell, Max B.
    Bleiweis, Mark S.
    Canter, Charles E.
    Humpl, Tilman
    [J]. CIRCULATION, 2013, 127 (16) : 1702 - +
  • [3] Waiting List Mortality Among Children Listed for Heart Transplantation in the United States
    Almond, Christopher S. D.
    Thiagarajan, Ravi R.
    Piercey, Gary E.
    Gauvreau, Kimberlee
    Blume, Elizabeth D.
    Bastardi, Heather J.
    Fynn-Thompson, Francis
    Singh, T. P.
    [J]. CIRCULATION, 2009, 119 (05) : 717 - 727
  • [4] Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction
    Angraal, Suveen
    Mortazavi, Bobak J.
    Gupta, Aakriti
    Khera, Rohan
    Ahmad, Tariq
    Desai, Nihar R.
    Jacoby, Daniel L.
    Masoudi, Frederick A.
    Spertus, John A.
    Krumholz, Harlan M.
    [J]. JACC-HEART FAILURE, 2020, 8 (01) : 12 - 21
  • [5] Second annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report: Pre-implant characteristics and outcomes
    Blume, Elizabeth D.
    VanderPluym, Christina
    Lorts, Angela
    TimothyBaldwin, J.
    Rossano, Joseph W.
    Morales, David L. S.
    Cantor, Ryan S.
    Miller, Marissa A.
    Louis, James D. St.
    Koehl, Devin
    Sutcliffe, David L.
    Eghtesady, Pirooz
    Kirklin, James K.
    Rosenthal, DavidN.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2018, 37 (01) : 38 - 45
  • [6] Outcomes in Patients With Hypertrophic Cardiomyopathy Awaiting Heart Transplantation
    Cisneros, Julio Zuniga
    Stehlik, Josef
    Selzman, Craig H.
    Drakos, Stavros G.
    McKellar, Stephen H.
    Wever-Pinzon, Omar
    [J]. CIRCULATION-HEART FAILURE, 2018, 11 (03) : e004378
  • [7] Delineating Survival Outcomes in Children <10 kg Bridged to Transplant or Recovery With the Berlin Heart EXCOR Ventricular Assist Device
    Conway, Jennifer
    St Louis, James
    Morales, David L. S.
    Law, Sabrina
    Tjossem, Christine
    Humpl, Tilman
    [J]. JACC-HEART FAILURE, 2015, 3 (01) : 70 - 77
  • [8] Ventricular Assist Device Support as a Bridge to Transplantation in Pediatric Patients
    Dipchand, Anne I.
    Kirk, Richard
    Naftel, David C.
    Pruitt, Elizabeth
    Blume, Elizabeth D.
    Morrow, Robert
    Rosenthal, David
    Auerbach, Scott
    Richmond, Marc E.
    Kirklin, James K.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 72 (04) : 402 - 415
  • [9] Jo JY., 2019, SCI REP-UK, V2, P1107
  • [10] Risk Assessment in Patients with a Left Ventricular Assist Device Across INTERMACS Profiles Using Bayesian Analysis
    Kanwar, Manreet K.
    Lohmueller, Lisa C.
    Teuteberg, Jeffrey
    Kormos, Robert L.
    Rogers, Joseph G.
    Benza, Raymond L.
    Lindenfeld, Joann
    McIlvennan, Colleen
    Bailey, Stephen H.
    Murali, Srinivas
    Antaki, James F.
    [J]. ASAIO JOURNAL, 2019, 65 (05) : 436 - 441