The analysis of semi-competing risks data using Archimedean copula models

被引:0
作者
Wang, Antai [1 ]
Guo, Ziyan [2 ]
Zhang, Yilong [3 ]
Wu, Jihua [4 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] Bristol Myers Squibb, Global Biometr & Data Sci, Berkeley Hts, NJ USA
[3] Merck & CO Inc, Dept Biostat & Res Decis Sci, Rahway, NJ USA
[4] BioRay Pharmaceut Co Ltd, Dept Biostat & Data Sci, Hangzhou, Zhejiang, Peoples R China
关键词
Archimedean copula models; copula-graphic estimator; marginal survival functions; semi-competing risks data; GRAPHIC ESTIMATOR; MARGINAL SURVIVAL; ASSOCIATION;
D O I
10.1111/stan.12311
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we derive the copula-graphic estimator (Zheng and Klein) for marginal survival functions using Archimedean copula models based on competing risks data subject to univariate right censoring and prove its uniform consistency and asymptotic properties. We then propose a novel parameter estimation method based on the semi-competing risks data using Archimedean copula models. Based on our estimation strategy, we propose a new model selection procedure. We also describe an easy way to accommodate possible covariates in data analysis using our strategies. Simulation studies have shown that our parameter estimate outperforms the estimator proposed by Lakhal, Rivest and Abdous for the Hougaard model and the model selection procedure works quite well. We fit a leukemia dataset using our model and end our paper with some discussion.
引用
收藏
页码:191 / 207
页数:17
相关论文
共 17 条