A data-driven approach to the "Everesting" cycling challenge

被引:0
作者
Seo, Junhyeon [1 ]
Raeymaekers, Bart [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
D O I
10.1038/s41598-023-29435-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The "Everesting" challenge is a cycling activity in which a cyclist repeats a hill until accumulating an elevation gain equal to the elevation of Mount Everest in a single ride. The challenge experienced a surge in interest during the COVID-19 pandemic and the cancelation of cycling races around the world that prompted cyclists to pursue alternative, individual activities. The time to complete the Everesting challenge depends on the fitness and talent of the cyclist, but also on the length and gradient of the hill, among other parameters. Hence, preparing an Everesting attempt requires understanding the relationship between the Everesting parameters and the time to complete the challenge. We use web-scraping to compile a database of publicly available Everesting attempts, and we quantify and rank the parameters that determine the time to complete the challenge. We also use unsupervised machine learning algorithms to segment cyclists into distinct groups according to their characteristics and performance. We conclude that the power per unit body mass of the cyclist and the tradeoff between the gradient of the hill and the distance are the most important considerations when attempting the Everesting challenge. As such, elite cyclists best select a hill with gradient >12%, whereas amateur and recreational cyclists best select a hill with gradient <10% to minimize the time to complete the Everesting challenge.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A Data-Driven Approach to SAR Data-Focusing
    Guaragnella, Cataldo
    D'Orazio, Tiziana
    SENSORS, 2019, 19 (07):
  • [42] Everesting: cycling the elevation of the tallest mountain on Earth
    Wannes Swinnen
    Emily Laughlin
    Wouter Hoogkamer
    European Journal of Applied Physiology, 2022, 122 : 2565 - 2574
  • [43] Evaluation of large-scale cycling environment by using the trajectory data of dockless shared bicycles: A data-driven approach
    Ni, Ying
    Wang, Shihan
    Chen, Jiaqi
    Feng, Bufan
    Yu, Rongjie
    Cai, Yilin
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (10) : 1943 - 1961
  • [44] A Data-Driven Approach for GPS Trajectory Data Cleaning
    Li, Lun
    Chen, Xiaohang
    Liu, Qizhi
    Bao, Zhifeng
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 3 - 19
  • [45] A Causal, Data-driven Approach to Modeling the Kepler Data
    Wang, Dun
    Hogg, David W.
    Foreman-Mackey, Daniel
    Schoelkopf, Bernhard
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2016, 128 (967)
  • [46] A Missing Data Approach to Data-Driven Filtering and Control
    Markovsky, Ivan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) : 1972 - 1978
  • [47] A DATA-DRIVEN APPROACH FOR ESTIMATING THE FUNDAMENTAL DIAGRAM
    Bhouri, Neila
    Aron, Maurice
    Hajsalem, Habib
    PROMET-TRAFFIC & TRANSPORTATION, 2019, 31 (02): : 117 - 128
  • [48] Data-Driven Approach to Protecting Critical Infrastructure
    Hurley, John
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON CYBER WARFARE AND SECURITY (ICCWS 2017), 2017, : 509 - 513
  • [49] A Holistic Approach for Data-Driven Object Cutout
    Xu, Huayong
    Li, Yangyan
    Chen, Wenzheng
    Lischinski, Dani
    Cohen-Or, Daniel
    Chen, Baoquan
    COMPUTER VISION - ACCV 2016, PT I, 2017, 10111 : 245 - 260
  • [50] Lung Nodule Modeling - A Data-Driven Approach
    Farag, Amal
    Graham, James
    Farag, Aly
    Falk, Robert
    ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 347 - 356