Extraction of cropland field parcels with high resolution remote sensing using multi-task learning

被引:18
作者
Xu, Leilei [1 ]
Yang, Peng [1 ]
Yu, Juanjuan [1 ]
Peng, Fei [2 ]
Xu, Jia [1 ]
Song, Shiran [3 ]
Wu, Yongxing [4 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing, Peoples R China
[2] Univ Edinburgh, Inst Atmospher & Environm Sci, Edinburgh, Scotland
[3] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Peoples R China
[4] SITRI, Urban Renewal Technol Res Inst, Suzhou, Peoples R China
关键词
High-resolution image; semantic segmentation; edge detection and repair; cropland-parcel extraction; multi-task learning; DOMAIN ADAPTATION; SEGMENTATION; IMAGES;
D O I
10.1080/22797254.2023.2181874
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Parcel-level farmland information contains rich spatial distribution and boundary details, which is crucial for digital agriculture and agricultural resource surveys. However, the spatial complexity and heterogeneity of features resulting from high resolution makes it difficult to obtain parcel-level information quickly and accurately. In addition, existing methods do not sufficiently take into account the spatial topological information, particularly for blurred boundaries. Here, we develop a multi-task network model to extract plot-level cropland information. Specifically, the model consists of a cascaded multi-task network with integrated semantic and edge detection, a refinement network with fixed edge local connectivity, and an integrated fusion model. To validate the performance of the model, two typical tests were conducted in Denmark (Europe) and Chongqing (Asia) with high-resolution remote sensing images provided by Sentinel-2 (10 m) and Google Earth (0.53 m) as data sources. The results show that our proposed model outperforms other baseline models and exhibits higher performance. This study is expected to provide important support for the design of new global agricultural information management systems in the future.
引用
收藏
页数:23
相关论文
共 57 条
[1]   Improved Road Connectivity by Joint Learning of Orientation and Segmentation [J].
Batra, Anil ;
Singh, Suriya ;
Pang, Guan ;
Basu, Saikat ;
Jawahar, C., V ;
Paluri, Manohar .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10377-10385
[2]   Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis [J].
Belgiu, Mariana ;
Csillik, Ovidiu .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :509-523
[3]  
Bischke B, 2019, IEEE IMAGE PROC, P1480, DOI [10.1109/ICIP.2019.8803050, 10.1109/icip.2019.8803050]
[4]   ISNet: Towards Improving Separability for Remote Sensing Image Change Detection [J].
Cheng, Gong ;
Wang, Guangxing ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[5]   When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs [J].
Cheng, Gong ;
Yang, Ceyuan ;
Yao, Xiwen ;
Guo, Lei ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05) :2811-2821
[6]   ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data [J].
Diakogiannis, Foivos, I ;
Waldner, Francois ;
Caccetta, Peter ;
Wu, Chen .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 :94-114
[7]   DiResNet: Direction-Aware Residual Network for Road Extraction in VHR Remote Sensing Images [J].
Ding, Lei ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12) :10243-10254
[8]   PnP-AdaNet: Plug-and-Play Adversarial Domain Adaptation Network at Unpaired Cross-Modality Cardiac Segmentation [J].
Dou, Qi ;
Ouyang, Cheng ;
Chen, Cheng ;
Chen, Hao ;
Glocker, Ben ;
Zhuang, Xiahai ;
Pheng-Ann Heng .
IEEE ACCESS, 2019, 7 :99065-99076
[9]  
Farahani A., 2021, ADV DATA SCI INFORM, P877, DOI [DOI 10.1007/978-3-030-71704-9_65, 10.1007/978-3-030-71704-965]
[10]   Mapping global cropland and field size [J].
Fritz, Steffen ;
See, Linda ;
McCallum, Ian ;
You, Liangzhi ;
Bun, Andriy ;
Moltchanova, Elena ;
Duerauer, Martina ;
Albrecht, Fransizka ;
Schill, Christian ;
Perger, Christoph ;
Havlik, Petr ;
Mosnier, Aline ;
Thornton, Philip ;
Wood-Sichra, Ulrike ;
Herrero, Mario ;
Becker-Reshef, Inbal ;
Justice, Chris ;
Hansen, Matthew ;
Gong, Peng ;
Aziz, Sheta Abdel ;
Cipriani, Anna ;
Cumani, Renato ;
Cecchi, Giuliano ;
Conchedda, Giulia ;
Ferreira, Stefanus ;
Gomez, Adriana ;
Haffani, Myriam ;
Kayitakire, Francois ;
Malanding, Jaiteh ;
Mueller, Rick ;
Newby, Terence ;
Nonguierma, Andre ;
Olusegun, Adeaga ;
Ortner, Simone ;
Rajak, D. Ram ;
Rocha, Jansle ;
Schepaschenko, Dmitry ;
Schepaschenko, Maria ;
Terekhov, Alexey ;
Tiangwa, Alex ;
Vancutsem, Christelle ;
Vintrou, Elodie ;
Wu Wenbin ;
van der Velde, Marijn ;
Dunwoody, Antonia ;
Kraxner, Florian ;
Obersteiner, Michael .
GLOBAL CHANGE BIOLOGY, 2015, 21 (05) :1980-1992