Nontrivial Solutions for a (p, q)-Type Critical Choquard Equation on the Heisenberg Group

被引:0
作者
Yang, Baoling [1 ]
Zhang, Deli [1 ]
Liang, Sihua [1 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
关键词
(p; q)-Laplacian problem; Heisenberg group; Critical exponents; Nonlinearity; Variation methods; EXISTENCE; REGULARITY; LAPLACIAN; GROWTH; SPACES;
D O I
10.1007/s40840-022-01449-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a critical (p, q) equation on the Heisenberg group of the following form: -delta(H,p)u-delta(H,q)u+V(xi)(|u|(p-2)u+|u|(q-2)u)=mu integral F-n(H)(xi,u)|eta(-1)xi|lambda d xi f(eta,u)+|u|(q & lowast;-2)u,where the operator -delta(H,P)phi=div (H)(|DH phi|D-P-2(H)H phi), with P is an element of{p,q} is the proverbial horizontal P-Laplacian on the Heisenberg group, 1 < p <(2Q-lambda)/2Q q < q < Q, q & lowast;=qQ/(Q-q) is the critical exponent, and Q=2n+2 is the homogeneous dimension of H-n, mu and lambda are some real parameters. Under the appropriate assumptions of potential functions V and f, the existence of entire solutions to the above equation on the Heisenberg group is obtained by using the mountain pass theorem and the concentration compactness principle. The results presented here extend or complete recent papers and are new to critical equations involving (p, q)-Laplacian operators and convolution terms on Heisenberg group
引用
收藏
页数:29
相关论文
共 39 条
[1]   Nonnegative solution of a class of double phase problems with logarithmic nonlinearity [J].
Aberqi, Ahmed ;
Benslimane, Omar ;
Elmassoudi, Mhamed ;
Ragusa, Maria Alessandra .
BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
[2]   A multiplicity result for a (p, q)-Schrodinger-Kirchhoff type equation [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) :943-984
[3]   Fractional double-phase patterns: concentration and multiplicity of solutions [J].
Ambrosio, Vincenzo ;
Radulescu, Vicentiu D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 :101-145
[4]   Existence of entire solutions for a class of quasilinear elliptic equations [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03) :977-1009
[5]   Existence and Uniqueness of Weak Solution of p(x)- Laplacian in Sobolev Spaces With Variable Exponents in Complete Manifolds [J].
Benslimane, Omar ;
Aberqi, Ahmed ;
Bennouna, Jaouad .
FILOMAT, 2021, 35 (05) :1453-1463
[6]   Existence Problems on Heisenberg Groups Involving Hardy and Critical Terms [J].
Bordoni, Sara ;
Filippucci, Roberta ;
Pucci, Patrizia .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) :1887-1917
[7]  
Chen C., 2016, BOUND VALUE PROBL, V2016, P1
[8]   Multiple solutions for a class of quasilinear Schrodinger equations in RN [J].
Chen, Caisheng .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[9]   Multiplicity and Concentration Results for a Magnetic Schrodinger Equation With Exponential Critical Growth in R2 [J].
d'Avenia, Pietro ;
Ji, Chao .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) :862-897
[10]   Existence of positive solutions for a class of p&q elliptic problems with critical growth on RN [J].
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :507-518