Adapting ?tool? size using flow focusing: A new technique for electrochemical jet machining

被引:12
作者
Bisterov, Ivan [1 ]
Abayzeed, Sidahmed [2 ]
Speidel, Alistair [1 ]
Magnini, Mirco [3 ]
Zubayr, Mohamed [1 ]
Clare, Adam T. [1 ]
机构
[1] Univ Nottingham, Adv Mfg Res Grp, Nottingham NG7 2RD, England
[2] Univ Nottingham, Opt & Photon Res Grp, Nottingham NG7 2RD, England
[3] Univ Nottingham, Fluids & Thermal Engn Res Grp, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Electrochemical jet machining; Electrochemical machining; Precision machining; Flow focusing; Tool design; IMPINGING JET; MASS-TRANSFER; INSTABILITY;
D O I
10.1016/j.jmatprotec.2022.117807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrochemical jet manufacturing methods exploit the localised interaction of an electrified jet with a conductive workpiece. This has been exploited by numerous researchers to deposit and remove material. In recent studies, the same approach has been used as an analysis tool to measure and evaluate engineering components. The capability of this manufacturing method is limited by the resolution, which is governed by the diameter of the jet. Although approaches have been taken to reduce the kerf or interaction volume in the process, it is the jet diameter still provides the fundamental limit. In this study, a new method is proposed which takes advantage of a constriction effect to reduce the jet diameter through flow focusing, which occurs in coaxial two-phase flows. A novel nozzle arrangement is presented which demonstrates jets can be constricted by 79% leading to 54% reduction in machined kerf width. The limitations of this method are investigated in the context of fluid dynamic constraints, identifying optimum operating regions to utilise the approach in a computer numerical control machine tool arrangement. This enables continuously varying tool size in-process, which is analogous to other energy beam processes where spot size can be adjusted with a corresponding response influence.
引用
收藏
页数:11
相关论文
共 36 条
[1]   A new flow focusing technique to produce very thin jets [J].
Acero, A. J. ;
Rebollo-Munoz, N. ;
Montanero, J. M. ;
Ganan-Calvo, A. M. ;
Vega, E. J. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (06)
[2]   Focusing liquid microjets with nozzles [J].
Acero, A. J. ;
Ferrera, C. ;
Montanero, J. M. ;
Ganan-Calvo, A. M. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (06)
[3]   Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery [J].
Beyerlein, K. R. ;
Adriano, L. ;
Heymann, M. ;
Kirian, R. ;
Knoska, J. ;
Wilde, F. ;
Chapman, H. N. ;
Bajt, S. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (12)
[4]   On-machine measurement with an electrochemical jet machine tool [J].
Bisterov, Ivan ;
Abayzeed, Sidahmed ;
Speidel, Alistair ;
Clare, Adam T. .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2022, 174
[5]   Whipping in gaseous flow focusing [J].
Blanco-Trejo, S. ;
Herrada, M. A. ;
Ganan-Calvo, A. M. ;
Rubio, A. ;
Cabezas, M. G. ;
Montanero, J. M. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2020, 130
[6]   Femtosecond X-ray protein nanocrystallography [J].
Chapman, Henry N. ;
Fromme, Petra ;
Barty, Anton ;
White, Thomas A. ;
Kirian, Richard A. ;
Aquila, Andrew ;
Hunter, Mark S. ;
Schulz, Joachim ;
DePonte, Daniel P. ;
Weierstall, Uwe ;
Doak, R. Bruce ;
Maia, Filipe R. N. C. ;
Martin, Andrew V. ;
Schlichting, Ilme ;
Lomb, Lukas ;
Coppola, Nicola ;
Shoeman, Robert L. ;
Epp, Sascha W. ;
Hartmann, Robert ;
Rolles, Daniel ;
Rudenko, Artem ;
Foucar, Lutz ;
Kimmel, Nils ;
Weidenspointner, Georg ;
Holl, Peter ;
Liang, Mengning ;
Barthelmess, Miriam ;
Caleman, Carl ;
Boutet, Sebastien ;
Bogan, Michael J. ;
Krzywinski, Jacek ;
Bostedt, Christoph ;
Bajt, Sasa ;
Gumprecht, Lars ;
Rudek, Benedikt ;
Erk, Benjamin ;
Schmidt, Carlo ;
Hoemke, Andre ;
Reich, Christian ;
Pietschner, Daniel ;
Strueder, Lothar ;
Hauser, Guenter ;
Gorke, Hubert ;
Ullrich, Joachim ;
Herrmann, Sven ;
Schaller, Gerhard ;
Schopper, Florian ;
Soltau, Heike ;
Kuehnel, Kai-Uwe ;
Messerschmidt, Marc .
NATURE, 2011, 470 (7332) :73-U81
[7]   Comparative measurement of the breakup length of liquid jets in airblast atomisers using optical connectivity, electrical connectivity and shadowgraphy [J].
Charalampous, Georgios ;
Hadjiyiannis, Constantinos ;
Hardalupas, Yannis .
MEASUREMENT, 2016, 89 :288-299
[8]   MASS-TRANSFER TO AN IMPINGING JET ELECTRODE [J].
CHIN, DT ;
TSANG, CH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (09) :1461-1470
[9]   Precision enhanced electrochemical jet processing [J].
Clare, Adam T. ;
Speidel, Alistair ;
Bisterov, Ivan ;
Jackson-Crisp, Alexander ;
Mitchell-Smith, Jonathon .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2018, 67 (01) :205-208
[10]   JET AND LASER-JET ELECTROCHEMICAL MICROMACHINING OF NICKEL AND STEEL [J].
DATTA, M ;
ROMANKIW, LT ;
VIGLIOTTI, DR ;
VONGUTFELD, RJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (08) :2251-2256