Multi-branch spatial-temporal-spectral convolutional neural networks for multi-task motor imagery EEG classification

被引:7
|
作者
Cai, Zikun [1 ,2 ]
Luo, Tian-jian [1 ,2 ]
Cao, Xuan [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, Digital Fujian Internet Of Thing Lab Environm Moni, Fuzhou 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Motor imagery EEG; Multi-task learning; Multi-branch model; Spatial-temporal-spectral features; Brain computer interface; BRAIN-COMPUTER INTERFACE; MACHINE;
D O I
10.1016/j.bspc.2024.106156
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery electroencephalograph (MI-EEG) decoding plays a crucial role in developing motor imagery brain-computer interfaces (MI-BCIs). However, MI-EEG signals exhibit temporal variations and spatial coupling characteristics, necessitating effective feature representation for accurate classification. In this paper, we propose a Multi-Task Multi-Branch spatial-temporal-spectral feature representation model based on Convolutional Neural Network (MT-MBCNN) for MI-EEG classification. Our model encompasses three learning tasks: multibranch spatial-temporal feature classification, multi-bands spectral feature contrastive learning, and classprototype learning. These tasks are jointly learned during model training, with the losses of each task weighted and optimized to enhance MI-EEG decoding performance. To mitigate the issue of limited samples, we introduce a novel MI-EEG sample augmentation method to augment the diversity of the training set. Extensive experiments are conducted on three publicly available MI-EEG datasets, achieving outstanding average binary classification accuracies of 89.5%, 81.4%, and 70.13% for each dataset, respectively. Ablation studies demonstrate the necessity and significance of multi-task learning, multi-branch architecture, center-loss-based classprototype learning, and sample augmentation for MI-EEG decoding using CNN models. Our MT-MBCNN model exhibits exceptional capabilities in spatial-temporal-spectral feature representations for constructing MI-BCIs. The source code of MT-MBCNN model is available at: https://github.com/my94my/MT-MBCNN.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Deep Convolutional Neural Networks for Multi-Instance Multi-Task Learning
    Zeng, Tao
    Ji, Shuiwang
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 579 - 588
  • [42] Attention-Aware Multi-Task Convolutional Neural Networks
    Lyu, Kejie
    Li, Yingming
    Zhang, Zhongfei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1867 - 1878
  • [43] Deep Convolutional Neural Network for Segmentation and Classification of Structural Multi-branch Cracks
    Kandula, Himavanth
    Koduri, Hrushith Ram
    Kalapatapu, Prafulla
    Pasupuleti, Venkata Dilip Kumar
    EUROPEAN WORKSHOP ON STRUCTURAL HEALTH MONITORING (EWSHM 2022), VOL 2, 2023, : 177 - 185
  • [44] A novel hybrid kernel function relevance vector machine for multi-task motor imagery EEG classification
    Dong, Enzeng
    Zhou, Kairui
    Tong, Jigang
    Du, Shengzhi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 60
  • [45] A learnable continuous wavelet-based multi-branch attentive convolutional neural network for spatio-spectral-temporal EEG signal decoding
    Kim, Jun -Mo
    Heo, Keun-Soo
    Shin, Dong-Hee
    Nam, Hyeonyeong
    Won, Dong-Ok
    Jeong, Ji-Hoon
    Kam, Tae-Eui
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [46] A Multi-Task Learning and Multi-Branch Network for DR and DME Joint Grading
    Xing, Xiaoxue
    Mao, Shenbo
    Yan, Minghan
    Yu, He
    Yuan, Dongfang
    Zhu, Cancan
    Zhang, Cong
    Zhou, Jian
    Xu, Tingfa
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [47] Multi-Branch-CNN: Classification of ion channel interacting peptides using multi-branch convolutional neural network
    Yan, Jielu
    Zhang, Bob
    Zhou, Mingliang
    Kwok, Hang Fai
    Siu, Shirley W., I
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 147
  • [48] Multi-branch structure of layered neural networks
    Yamashita, T
    Hirasawa, K
    Hu, JL
    Murata, J
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 243 - 247
  • [49] Recurrent neural networks with multi-branch structure
    Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Kitakyushu-shi Fukuoka 808-0135, Japan
    不详
    IEEJ Trans. Electron. Inf. Syst., 2007, 9 (1430-1435+19):
  • [50] Multi-branch structure of layered neural networks
    Yamashita, T
    Hirasawa, K
    Hu, J
    Murata, J
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 759 - 764