Multi-branch spatial-temporal-spectral convolutional neural networks for multi-task motor imagery EEG classification

被引:7
|
作者
Cai, Zikun [1 ,2 ]
Luo, Tian-jian [1 ,2 ]
Cao, Xuan [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, Digital Fujian Internet Of Thing Lab Environm Moni, Fuzhou 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Motor imagery EEG; Multi-task learning; Multi-branch model; Spatial-temporal-spectral features; Brain computer interface; BRAIN-COMPUTER INTERFACE; MACHINE;
D O I
10.1016/j.bspc.2024.106156
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery electroencephalograph (MI-EEG) decoding plays a crucial role in developing motor imagery brain-computer interfaces (MI-BCIs). However, MI-EEG signals exhibit temporal variations and spatial coupling characteristics, necessitating effective feature representation for accurate classification. In this paper, we propose a Multi-Task Multi-Branch spatial-temporal-spectral feature representation model based on Convolutional Neural Network (MT-MBCNN) for MI-EEG classification. Our model encompasses three learning tasks: multibranch spatial-temporal feature classification, multi-bands spectral feature contrastive learning, and classprototype learning. These tasks are jointly learned during model training, with the losses of each task weighted and optimized to enhance MI-EEG decoding performance. To mitigate the issue of limited samples, we introduce a novel MI-EEG sample augmentation method to augment the diversity of the training set. Extensive experiments are conducted on three publicly available MI-EEG datasets, achieving outstanding average binary classification accuracies of 89.5%, 81.4%, and 70.13% for each dataset, respectively. Ablation studies demonstrate the necessity and significance of multi-task learning, multi-branch architecture, center-loss-based classprototype learning, and sample augmentation for MI-EEG decoding using CNN models. Our MT-MBCNN model exhibits exceptional capabilities in spatial-temporal-spectral feature representations for constructing MI-BCIs. The source code of MT-MBCNN model is available at: https://github.com/my94my/MT-MBCNN.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Multi-Sessions Outcome for EEG Feature Extraction and Classification Methods in a Motor Imagery Task
    Hrisca-Eva, Oana-Diana
    Lazar, Anca Mihaela
    TRAITEMENT DU SIGNAL, 2021, 38 (02) : 261 - 268
  • [32] EEG-Channel-Temporal-Spectral-Attention Correlation for Motor Imagery EEG Classification
    Hsu, Wei-Yen
    Cheng, Ya-Wen
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1659 - 1669
  • [33] Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification
    Yousif, Abdallah
    Niu, Zhendong
    Chambua, James
    Khan, Zahid Younas
    NEUROCOMPUTING, 2019, 335 : 195 - 205
  • [34] Ensemble of multi-task deep convolutional neural networks using transfer learning for fruit freshness classification
    Jaeyong Kang
    Jeonghwan Gwak
    Multimedia Tools and Applications, 2022, 81 : 22355 - 22377
  • [35] Recognition of multi-class motor imagery EEG signals based on convolutional neural network
    Liu J.-Z.
    Ye F.-F.
    Xiong H.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (11): : 2054 - 2066
  • [36] Dual regularized spatial-temporal features adaptation for multi-source selected cross-subject motor imagery EEG classification
    Luo, Tian-jian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [37] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chu, Chaoqin
    Xiao, Qinkun
    Chang, Leran
    Shen, Jianing
    Zhang, Na
    Du, Yu
    Xing, Heng
    Gao, Hui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45747 - 45767
  • [38] Using Multi-task Learning to Improve Diagnostic Performance of Convolutional Neural Networks
    Fang, Mengjie
    Dong, Di
    Sun, Ruijia
    Fan, Li
    Sun, Yingshi
    Liu, Shiyuan
    Tian, Jie
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [39] Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks
    Xi-Jin Zhang
    Yi-Fan Lu
    Song-Hai Zhang
    Journal of Computer Science and Technology, 2016, 31 : 489 - 500
  • [40] Multi-task Neural Networks Convolutional Learning Model for Maize Disease Identification
    Niyomwungere, Diane
    Mwangi, Waweru
    Rimiru, Richard
    2022 IST-AFRICA CONFERENCE, 2022,