Multi-branch spatial-temporal-spectral convolutional neural networks for multi-task motor imagery EEG classification

被引:7
|
作者
Cai, Zikun [1 ,2 ]
Luo, Tian-jian [1 ,2 ]
Cao, Xuan [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, Digital Fujian Internet Of Thing Lab Environm Moni, Fuzhou 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Motor imagery EEG; Multi-task learning; Multi-branch model; Spatial-temporal-spectral features; Brain computer interface; BRAIN-COMPUTER INTERFACE; MACHINE;
D O I
10.1016/j.bspc.2024.106156
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery electroencephalograph (MI-EEG) decoding plays a crucial role in developing motor imagery brain-computer interfaces (MI-BCIs). However, MI-EEG signals exhibit temporal variations and spatial coupling characteristics, necessitating effective feature representation for accurate classification. In this paper, we propose a Multi-Task Multi-Branch spatial-temporal-spectral feature representation model based on Convolutional Neural Network (MT-MBCNN) for MI-EEG classification. Our model encompasses three learning tasks: multibranch spatial-temporal feature classification, multi-bands spectral feature contrastive learning, and classprototype learning. These tasks are jointly learned during model training, with the losses of each task weighted and optimized to enhance MI-EEG decoding performance. To mitigate the issue of limited samples, we introduce a novel MI-EEG sample augmentation method to augment the diversity of the training set. Extensive experiments are conducted on three publicly available MI-EEG datasets, achieving outstanding average binary classification accuracies of 89.5%, 81.4%, and 70.13% for each dataset, respectively. Ablation studies demonstrate the necessity and significance of multi-task learning, multi-branch architecture, center-loss-based classprototype learning, and sample augmentation for MI-EEG decoding using CNN models. Our MT-MBCNN model exhibits exceptional capabilities in spatial-temporal-spectral feature representations for constructing MI-BCIs. The source code of MT-MBCNN model is available at: https://github.com/my94my/MT-MBCNN.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A deep temporal network for motor imagery classification based on multi-branch feature fusion and attention mechanism
    Zhao, Jinke
    Liu, Mingliang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [32] The Design of Multi-task Simulation Manipulator Based on Motor Imagery EEG
    Ye, Yuhang
    Yang, Chenguang
    Li, Xinyang
    Ju, Zhaojie
    Li, Zhijun
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 3284 - 3289
  • [33] SAR and Multi-Spectral Data Fusion for Local Climate Zone Classification with Multi-Branch Convolutional Neural Network
    He, Guangjun
    Dong, Zhe
    Guan, Jian
    Feng, Pengming
    Jin, Shichao
    Zhang, Xueliang
    REMOTE SENSING, 2023, 15 (02)
  • [34] Motor Imagery Based EEG Classification by Using Common Spatial Patterns and Convolutional Neural Networks
    Korhan, Nuri
    Dokur, Zumray
    Olmez, Tamer
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [35] Joint spatial and temporal features extraction for multi-classification of motor imagery EEG
    Jia, Xueyu
    Song, Yonghao
    Yang, Lie
    Xie, Longhan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [36] EEG Representation in Deep Convolutional Neural Networks for Classification of Motor Imagery
    Robinson, Neethu
    Lee, Seong-Whan
    Guan, Cuntai
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1322 - 1326
  • [37] Convolutional Neural Networks Based Multi-task Deep Learning for Movie Review Classification
    Li, Xuanyi
    Wu, Weimin
    Su, Hongye
    2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 382 - 388
  • [38] AUTOMATIC RESPIRATORY SOUND CLASSIFICATION VIA MULTI-BRANCH TEMPORAL CONVOLUTIONAL NETWORK
    Zhao, Ziping
    Gong, Zhen
    Niu, Mingyue
    Ma, Jiali
    Wang, Haishuai
    Zhang, Zixing
    Li, Ya
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 9102 - 9106
  • [39] Fusion Convolutional Neural Network for Multi-Class Motor Imagery of EEG Signals Classification
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1642 - 1647
  • [40] On the Use of Convolutional Neural Networks and Augmented CSP Features for Multi-class Motor Imagery of EEG Signals Classification
    Yang, Huijuan
    Sakhavi, Siavash
    Ang, Kai Keng
    Guan, Cuntai
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 2620 - 2623