Multi-branch spatial-temporal-spectral convolutional neural networks for multi-task motor imagery EEG classification

被引:10
作者
Cai, Zikun [1 ,2 ]
Luo, Tian-jian [1 ,2 ]
Cao, Xuan [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, Digital Fujian Internet Of Thing Lab Environm Moni, Fuzhou 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Motor imagery EEG; Multi-task learning; Multi-branch model; Spatial-temporal-spectral features; Brain computer interface; BRAIN-COMPUTER INTERFACE; MACHINE;
D O I
10.1016/j.bspc.2024.106156
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery electroencephalograph (MI-EEG) decoding plays a crucial role in developing motor imagery brain-computer interfaces (MI-BCIs). However, MI-EEG signals exhibit temporal variations and spatial coupling characteristics, necessitating effective feature representation for accurate classification. In this paper, we propose a Multi-Task Multi-Branch spatial-temporal-spectral feature representation model based on Convolutional Neural Network (MT-MBCNN) for MI-EEG classification. Our model encompasses three learning tasks: multibranch spatial-temporal feature classification, multi-bands spectral feature contrastive learning, and classprototype learning. These tasks are jointly learned during model training, with the losses of each task weighted and optimized to enhance MI-EEG decoding performance. To mitigate the issue of limited samples, we introduce a novel MI-EEG sample augmentation method to augment the diversity of the training set. Extensive experiments are conducted on three publicly available MI-EEG datasets, achieving outstanding average binary classification accuracies of 89.5%, 81.4%, and 70.13% for each dataset, respectively. Ablation studies demonstrate the necessity and significance of multi-task learning, multi-branch architecture, center-loss-based classprototype learning, and sample augmentation for MI-EEG decoding using CNN models. Our MT-MBCNN model exhibits exceptional capabilities in spatial-temporal-spectral feature representations for constructing MI-BCIs. The source code of MT-MBCNN model is available at: https://github.com/my94my/MT-MBCNN.
引用
收藏
页数:16
相关论文
共 67 条
[21]   MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor Imagery Classification [J].
Jia, Ziyu ;
Lin, Youfang ;
Wang, Jing ;
Yang, Kaixin ;
Liu, Tianhang ;
Zhang, Xinwang .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 :736-751
[22]   Effects of normal aging on event-related desynchronization/synchronization during a memory task in humans [J].
Karrasch, M ;
Laine, M ;
Rapinoja, P ;
Krause, CM .
NEUROSCIENCE LETTERS, 2004, 366 (01) :18-23
[23]   EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces [J].
Lawhern, Vernon J. ;
Solon, Amelia J. ;
Waytowich, Nicholas R. ;
Gordon, Stephen M. ;
Hung, Chou P. ;
Lance, Brent J. .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (05)
[24]  
Le Guennec Arthur, 2016, ECMLPKDD WORKSHOP AD, DOI DOI 10.1007/978-3-030-91445-5
[25]   Brain-machine interfaces: an overview [J].
Lebedev, Mikhail .
TRANSLATIONAL NEUROSCIENCE, 2014, 5 (01) :99-110
[26]   EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy [J].
Lee, Min-Ho ;
Kwon, O-Yeon ;
Kim, Yong-Jeong ;
Kim, Hong-Kyung ;
Lee, Young-Eun ;
Williamson, John ;
Fazli, Siamac ;
Lee, Seong-Whan .
GIGASCIENCE, 2019, 8 (05)
[27]   Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism [J].
Li, Chang ;
Wang, Bin ;
Zhang, Silin ;
Liu, Yu ;
Song, Rencheng ;
Cheng, Juan ;
Chen, Xun .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
[28]   Motor imagery EEG classification algorithm based on CNN-LSTM feature fusion network [J].
Li, Hongli ;
Ding, Man ;
Zhang, Ronghua ;
Xiu, Chunbo .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 72
[29]   MTLFuseNet: A novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning [J].
Li, Rui ;
Ren, Chao ;
Ge, Yiqing ;
Zhao, Qiqi ;
Yang, Yikun ;
Shi, Yuhan ;
Zhang, Xiaowei ;
Hu, Bin .
KNOWLEDGE-BASED SYSTEMS, 2023, 276
[30]   A Temporal-Spectral-Based Squeeze-and- Excitation Feature Fusion Network for Motor Imagery EEG Decoding [J].
Li, Yang ;
Guo, Lianghui ;
Liu, Yu ;
Liu, Jingyu ;
Meng, Fangang .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 :1534-1545