Multi-branch spatial-temporal-spectral convolutional neural networks for multi-task motor imagery EEG classification

被引:7
|
作者
Cai, Zikun [1 ,2 ]
Luo, Tian-jian [1 ,2 ]
Cao, Xuan [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, Digital Fujian Internet Of Thing Lab Environm Moni, Fuzhou 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Motor imagery EEG; Multi-task learning; Multi-branch model; Spatial-temporal-spectral features; Brain computer interface; BRAIN-COMPUTER INTERFACE; MACHINE;
D O I
10.1016/j.bspc.2024.106156
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery electroencephalograph (MI-EEG) decoding plays a crucial role in developing motor imagery brain-computer interfaces (MI-BCIs). However, MI-EEG signals exhibit temporal variations and spatial coupling characteristics, necessitating effective feature representation for accurate classification. In this paper, we propose a Multi-Task Multi-Branch spatial-temporal-spectral feature representation model based on Convolutional Neural Network (MT-MBCNN) for MI-EEG classification. Our model encompasses three learning tasks: multibranch spatial-temporal feature classification, multi-bands spectral feature contrastive learning, and classprototype learning. These tasks are jointly learned during model training, with the losses of each task weighted and optimized to enhance MI-EEG decoding performance. To mitigate the issue of limited samples, we introduce a novel MI-EEG sample augmentation method to augment the diversity of the training set. Extensive experiments are conducted on three publicly available MI-EEG datasets, achieving outstanding average binary classification accuracies of 89.5%, 81.4%, and 70.13% for each dataset, respectively. Ablation studies demonstrate the necessity and significance of multi-task learning, multi-branch architecture, center-loss-based classprototype learning, and sample augmentation for MI-EEG decoding using CNN models. Our MT-MBCNN model exhibits exceptional capabilities in spatial-temporal-spectral feature representations for constructing MI-BCIs. The source code of MT-MBCNN model is available at: https://github.com/my94my/MT-MBCNN.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multi-Task Convolutional Networks for Motor Imagery Classification Based on EEG and fNIRS
    Feng, Lufeng
    He, Qun
    Xu, Xiangyuan
    Jiang, Guoqian
    Xie, Ping
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S199 - S199
  • [2] MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor Imagery Classification
    Jia, Ziyu
    Lin, Youfang
    Wang, Jing
    Yang, Kaixin
    Liu, Tianhang
    Zhang, Xinwang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 736 - 751
  • [3] A Multi-Branch 3D Convolutional Neural Network for EEG-Based Motor Imagery Classification
    Zhao, Xinqiao
    Zhang, Hongmiao
    Zhu, Guilin
    You, Fengxiang
    Kuang, Shaolong
    Sun, Lining
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 2164 - 2177
  • [4] Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model
    Yu, Shiqi
    Wang, Zedong
    Wang, Fei
    Chen, Kai
    Yao, Dezhong
    Xu, Peng
    Zhang, Yong
    Wang, Hesong
    Zhang, Tao
    CEREBRAL CORTEX, 2024, 34 (02)
  • [5] A novel multi-branch hybrid neural network for motor imagery EEG signal classification
    Ma, Weifeng
    Xue, Haojie
    Sun, Xiaoyong
    Mao, Sijia
    Wang, Liudi
    Liu, Yang
    Wang, Yuchen
    Lin, Xuefen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
  • [6] A compact multi-branch 1D convolutional neural network for EEG-based motor imagery classification
    Liu, Xiaoguang
    Xiong, Shicheng
    Wang, Xiaodong
    Liang, Tie
    Wang, Hongrui
    Liu, Xiuling
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [7] EEG-FMCNN: A fusion multi-branch 1D convolutional neural network for EEG-based motor imagery classification
    Wang, Wenlong
    Li, Baojiang
    Wang, Haiyan
    Wang, Xichao
    Qin, Yuxin
    Shi, Xingbin
    Liu, Shuxin
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (01) : 107 - 120
  • [8] EEG-FMCNN: A fusion multi-branch 1D convolutional neural network for EEG-based motor imagery classification
    Wenlong Wang
    Baojiang Li
    Haiyan Wang
    Xichao Wang
    Yuxin Qin
    Xingbin Shi
    Shuxin Liu
    Medical & Biological Engineering & Computing, 2024, 62 (1) : 107 - 120
  • [9] One-Dimensional Convolutional Multi-branch Fusion Network for EEG-Based Motor Imagery Classification
    Liu, Xiaoguang
    Zhang, Mingjin
    Xiong, Shicheng
    Wang, Xiaodong
    Liang, Tie
    Li, Jun
    Xiong, Peng
    Wang, Hongrui
    Liu, Xiuling
    IRBM, 2023, 44 (06)
  • [10] A Densely Connected Multi-Branch 3D Convolutional Neural Network for Motor Imagery EEG Decoding
    Liu, Tianjun
    Yang, Deling
    BRAIN SCIENCES, 2021, 11 (02) : 1 - 24