Silicon photonics-based high-energy passively Q-switched laser

被引:23
作者
Singh, Neetesh [1 ]
Lorenzen, Jan [1 ,2 ]
Sinobad, Milan [1 ]
Wang, Kai [3 ]
Liapis, Andreas C. [4 ]
Frankis, Henry C. [5 ]
Haugg, Stefanie [6 ]
Francis, Henry [7 ]
Carreira, Jose [7 ]
Geiselmann, Michael [7 ]
Gaafar, Mahmoud A. [1 ]
Herr, Tobias [1 ,8 ]
Bradley, Jonathan D. B. [5 ]
Sun, Zhipei [4 ]
Garcia-Blanco, Sonia M. [3 ]
Kaertner, Franz X. [1 ,8 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Hamburg, Germany
[2] Univ Kiel, Kiel, Germany
[3] Univ Twente, MESA Inst Nanotechnol, Integrated Opt Syst, Enschede, Netherlands
[4] Aalto Univ, Dept Elect & Nanoengn, Espoo, Finland
[5] McMaster Univ, Dept Engn Phys, Hamilton, ON, Canada
[6] Univ Hamburg, Ctr Hybrid Nanostruct, Hamburg, Germany
[7] LIGENTEC SA, CH-1024 Ecublens, Switzerland
[8] Univ Hamburg, Dept Phys, Hamburg, Germany
基金
欧盟地平线“2020”;
关键词
DOPED FIBER LASER; GIANT OPTICAL GAIN; WAVE-GUIDE; HIGH-POWER; ERBIUM; INTEGRATION; ABSORPTION; AMPLIFIERS; DYNAMICS; ABLATION;
D O I
10.1038/s41566-024-01388-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Chip-scale, high-energy optical pulse generation is becoming increasingly important as integrated optics expands into space and medical applications where miniaturization is needed. Q-switching of the laser cavity was historically the first technique to generate high-energy pulses, and typically such systems are in the realm of large bench-top solid-state lasers and fibre lasers, especially in the long wavelength range >1.8 mu m, thanks to their large energy storage capacity. However, in integrated photonics, the very property of tight mode confinement that enables a small form factor becomes an impediment to high-energy applications owing to small optical mode cross-sections. Here we demonstrate a high-energy silicon photonics-based passively Q-switched laser with a compact footprint using a rare-earth gain-based large-mode-area waveguide. We demonstrate high on-chip output pulse energies of >150 nJ and 250 ns pulse duration in a single transverse fundamental mode in the retina-safe spectral region (1.9 mu m), with a slope efficiency of similar to 40% in a footprint of similar to 9 mm(2). The high-energy pulse generation demonstrated in this work is comparable to or in many cases exceeds that of Q-switched fibre lasers. This bodes well for field applications in medicine and space.
引用
收藏
页码:485 / 491
页数:7
相关论文
共 78 条
[31]  
Kartner F. X., 2018, PROC IEEE BICMOS COM
[32]  
KARTNER FX, 1995, OPT ENG, V34, P2024, DOI 10.1117/12.204794
[33]   Erbium in silicon [J].
Kenyon, AJ .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (12) :R65-R84
[34]  
Krainak M., 2019, PROC SOC PHOTOOPTICA
[35]   A generation of 2 μm Q-switched thulium-doped fibre laser based on anatase titanium(IV) oxide film saturable absorber [J].
Latiff, A. A. ;
Rusdi, M. F. M. ;
Hisyam, M. B. ;
Ahmad, H. ;
Harun, S. W. .
JOURNAL OF MODERN OPTICS, 2017, 64 (02) :187-190
[36]   Ti2AlC-based saturable absorber or passive Q-switching of a fiber laser [J].
Lee, Jinho ;
Kwon, Suhyoung ;
Lee, Ju Han .
OPTICAL MATERIALS EXPRESS, 2019, 9 (05) :2057-2066
[37]   Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model [J].
Leuthold, J ;
Mayer, M ;
Eckner, J ;
Guekos, G ;
Melchior, H ;
Zellweger, C .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (01) :618-620
[38]   Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform [J].
Li, Nanxi ;
Vermeulen, Diedrik ;
Su, Zhan ;
Magden, Emir Salih ;
Xin, Ming ;
Singh, Neetesh ;
Ruocco, Alfonso ;
Notaros, Jelena ;
Poulton, Christopher V. ;
Timurdogan, Erman ;
Baiocco, Christopher ;
Watts, Michael R. .
OPTICS EXPRESS, 2018, 26 (13) :16200-16211
[39]   Thulium-doped fiber amplifier for optical communications at 2 μm [J].
Li, Z. ;
Heidt, A. M. ;
Daniel, J. M. O. ;
Jung, Y. ;
Alam, S. U. ;
Richardson, D. J. .
OPTICS EXPRESS, 2013, 21 (08) :9289-9297
[40]   Graphene-based passively Q-switched 2 μm thulium-doped fiber laser [J].
Liu, Jiang ;
Xu, Jia ;
Wang, Pu .
OPTICS COMMUNICATIONS, 2012, 285 (24) :5319-5322