Seasonal Effect of the Vegetation Clumping Index on Gross Primary Productivity Estimated by a Two-Leaf Light Use Efficiency Model

被引:6
|
作者
Li, Zhilong [1 ,2 ]
Jiao, Ziti [1 ,2 ,3 ]
Wang, Chenxia [1 ,2 ]
Yin, Siyang [1 ,2 ]
Guo, Jing [1 ,2 ]
Tong, Yidong [1 ,2 ]
Gao, Ge [1 ,2 ]
Tan, Zheyou [1 ,2 ]
Chen, Sizhe [1 ,2 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Inst Remote Sensing Sci & Engn, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Beijing Engn Res Ctr Global Land Remote Sensing Pr, Beijing 100875, Peoples R China
关键词
gross primary productivity; clumping index; seasonal difference; clumping index application; two-leaf light use efficiency model; temporal and spatial patterns; LEAF-AREA INDEX; EDDY COVARIANCE DATA; FLUX MEASUREMENTS; GROWING-SEASON; SATELLITE DATA; MODIS; CARBON; PHOTOSYNTHESIS; BRDF; GPP;
D O I
10.3390/rs15235537
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, light use efficiency (LUE) models driven by remote sensing data have been widely employed to estimate the gross primary productivity (GPP) of different terrestrial ecosystems at global or regional scales. Furthermore, the two-leaf light use efficiency (TL-LUE) model has been reported to improve the accuracy of GPP estimation, relative to the big-leaf MOD17 model, by separating the entire canopy into sunlit and shaded leaves through the use of constant clumping index estimation (omega). However, ignoring obvious seasonal changes in the vegetation clumping index (CI) most likely results in GPP estimation errors since the CI tends to present seasonal changes, especially with respect to the obvious presence or absence of leaves within the canopy of deciduous vegetation. Here, we propose a TL-CLUE model that considers the seasonal difference in the CI based on the TL-LUE model to characterize general changes in canopy seasonality. This method composites monthly CI values into two or three omega values to capture the general seasonal changes in CI while attempting to reduce the potential uncertainty caused during CI inversion. In theory, CI seasonality plays an essential role in the distribution of photosynthetically active radiation absorbed by the canopy (APAR). Specifically, the seasonal difference in CI values mainly considers the state of leaf growth, which is determined by the MODIS land surface phenology (LSP) product (MCD12Q2). Therefore, the one-year cycle (OYC) of leaf life is divided into two (leaf-off and leaf-on) or three seasons (leaf-off, leaf-scattering, and leaf-gathering) according to this MODIS LSP product, and the mean CI of each corresponding season for each vegetation class is computed to smoothen the uncertainties within each seasonal section. With these two or three seasonal omega values as inputs, the TL-CLUE model by which the seasonal differences in CI are incorporated into the TL-LUE model is run and evaluated based on observations from 84 eddy covariance (EC) tower sites across North America. The results of the analysis reveal that the TL-LUE model widely overestimates GPP for most vegetation types during the leaf-on season, particularly during the growth peak. Although the TL-LUE model shows that the temporal characteristics of GPP agree with the EC observations in terms of general trends, the TL-CLUE model further improves the accuracy of GPP estimation by considering the seasonal changes in the CI. The result of GPP estimation from the TL-CLUE model shows a lower error (RMSE = 2.46 g C m-2 d-1) than the TL-LUE model (RMSE = 2.75 g C m-2 d-1) and somewhat decreases the eight-day GPP overestimation in the TL-LUE model with a constant omega by approximately 9.76 and 8.970% when adapting three and two omega s from different seasons, respectively. The study demonstrates that the uncertainty of seasonal disturbance in the CI, quantified by a standard deviation of approximately 0.071 relative to the mean CI of 0.746, is diminished through simple averaging. The seasonal difference in CI should be considered in GPP estimation of terrestrial ecosystems, particularly for vegetation with obvious canopy changes, where leaves go through the complete physiological processes of germination, stretching, maturity, and falling within a year. This study demonstrates the potential of the MODIS CI application in developing ecosystem and hydrological models.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Response of gross ecosystem productivity, light use efficiency, and water use efficiency of Mongolian steppe to seasonal variations in soil moisture
    Li, Sheng-Gong
    Eugster, Werner
    Asanuma, Jun
    Kotani, Ayumi
    Davaa, Gombo
    Oyunbaatar, Dambaravjaa
    Sugita, Michiaki
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G1)
  • [32] Changes of Light Components and Impacts on Interannual Variations of Photosynthesis in China Over 2000-2017 by Using a Two-Leaf Light Use Efficiency Model
    Yan, H.
    Wang, S. Q.
    Wang, J. B.
    Shugart, H. H.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (12)
  • [33] Bayesian optimization of a light use efficiency model for the estimation of daily gross primary productivity in a range of Italian forest ecosystems
    Bagnara, Maurizio
    Sottocornola, Matteo
    Cescatti, Alessandro
    Minerbi, Stefano
    Montagnani, Leonardo
    Gianelle, Damiano
    Magnani, Federico
    ECOLOGICAL MODELLING, 2015, 306 : 57 - 66
  • [34] Evaluation and Comparison of Light Use Efficiency and Gross Primary Productivity Using Three Different Approaches
    Wang, Mengjia
    Sun, Rui
    Zhu, Anran
    Xiao, Zhiqiang
    REMOTE SENSING, 2020, 12 (06)
  • [35] A two-stage light-use efficiency model for improving gross primary production estimation in agroecosystems
    Huang, Lingxiao
    Lin, Xiaofeng
    Jiang, Shouzheng
    Liu, Meng
    Jiang, Yazhen
    Li, Zhao-Liang
    Tang, Ronglin
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (10)
  • [36] Response of savanna gross primary productivity to interannual variability in rainfall: Results of a remote sensing based light use efficiency model
    Kanniah, Kasturi Devi
    Beringer, Jason
    Hutley, Lindsay B.
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2013, 37 (05): : 642 - 663
  • [37] Effects of satellite spatial resolution on Gross Primary Productivity estimation through Light Use Efficiency modeling
    Vanikiotis, Theofilos
    Stagakis, Stavros
    Kyparissis, Aris
    SIXTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2018), 2018, 10773
  • [38] Climate-Induced Uncertainty in Modeling Gross Primary Productivity From the Light Use Efficiency Approach
    Wang, Jiyan
    Wang, Yong
    Xie, Xinyao
    Zhao, Wei
    Wu, Changlin
    Guan, Xiaobin
    Yang, Tao
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2024, 129 (10)
  • [39] Comparison and Optimization of Light Use Efficiency-Based Gross Primary Productivity Models in an Agroforestry Orchard
    Cui, Ningbo
    He, Ziling
    Wang, Mingjun
    Zhang, Wenjiang
    Zhao, Lu
    Gong, Daozhi
    Li, Jun
    Jiang, Shouzheng
    REMOTE SENSING, 2024, 16 (19)
  • [40] A Radiation-Regulated Dynamic Maximum Light Use Efficiency for Improving Gross Primary Productivity Estimation
    Xie, Zhiying
    Zhao, Cenliang
    Zhu, Wenquan
    Zhang, Hui
    Fu, Yongshuo H.
    REMOTE SENSING, 2023, 15 (05)