Chromosome genome assembly and whole genome sequencing of 110 individuals of Conogethes punctiferalis (Guenee)

被引:6
作者
Gao, Bojia [1 ]
Peng, Yan [1 ]
Jin, Minghui [1 ]
Zhang, Lei [1 ]
Han, Xiu [2 ]
Wu, Chao [1 ]
Yuan, He [1 ]
Awawing, Andongma [3 ]
Zheng, Fangqiang [4 ]
Li, Xiangdong [4 ]
Xiao, Yutao [1 ]
机构
[1] Chinese Acad Agr Sci, Agr Gen Inst Shenzhen, Shenzhen Branch, Guangdong Lab Lingnan Modern Agr,Minist Agr & Rura, Shenzhen 518120, Peoples R China
[2] Taishan Acad Forestry Sci, Tai An 271000, Peoples R China
[3] Univ Lancaster, Lancaster Environm Ctr, Lancaster LAI 4YQ, England
[4] Shandong Agr Univ, Coll Plant Protect, Tai An 271018, Peoples R China
关键词
ALIGNMENT; GENE; LEPIDOPTERA; TOOL;
D O I
10.1038/s41597-023-02730-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The yellow peach moth, Conogethes punctiferalis, is a highly polyphagous pest widespread in eastern and southern Asia. It demonstrates a unique ability to adapt to rotten host fruits and displays resistance to pathogenic microorganisms, including fungi. However, the lack of available genomic resources presents a challenge in comprehensively understanding the evolution of its innate immune genes. Here, we report a high-quality chromosome-level reference genome for C. punctiferalis utilizing PacBio HiFi sequencing and Hi-C technology. The genome assembly was 494 Mb in length with a contig N50 of 3.25 Mb. We successfully anchored 1,226 contigs to 31 pseudochromosomes. Our BUSCO analysis further demonstrated a gene coverage completeness of 96.3% in the genome assembly. Approximately 43% repeat sequences and 21,663 protein-coding genes were identified. In addition, we resequenced 110 C. punctiferalis individuals from east China, achieving an average coverage of 18.4 x and identifying 5.8 million high-quality SNPs. This work provides a crucial resource for understanding the evolutionary mechanism of C. punctiferalis' innate immune system and will help in developing new antibacterial drugs.
引用
收藏
页数:9
相关论文
共 43 条
[1]  
[Anonymous], 2023, NCBI Sequence Read Archive
[2]  
[Anonymous], 2023, European Variation Archive
[3]   BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP plus and AUGUSTUS supported by a protein database [J].
Bruna, Tomas ;
Hoff, Katharina J. ;
Lomsadze, Alexandre ;
Stanke, Mario ;
Borodovsky, Mark .
NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (01) :1-11
[4]   fastp: an ultra-fast all-in-one FASTQ preprocessor [J].
Chen, Shifu ;
Zhou, Yanqing ;
Chen, Yaru ;
Gu, Jia .
BIOINFORMATICS, 2018, 34 (17) :884-890
[5]   Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm [J].
Cheng, Haoyu ;
Concepcion, Gregory T. ;
Feng, Xiaowen ;
Zhang, Haowen ;
Li, Heng .
NATURE METHODS, 2021, 18 (02) :170-+
[6]   A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 [J].
Cingolani, Pablo ;
Platts, Adrian ;
Wang, Le Lily ;
Coon, Melissa ;
Tung Nguyen ;
Wang, Luan ;
Land, Susan J. ;
Lu, Xiangyi ;
Ruden, Douglas M. .
FLY, 2012, 6 (02) :80-92
[7]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[8]   CAFE: a computational tool for the study of gene family evolution [J].
De Bie, T ;
Cristianini, N ;
Demuth, JP ;
Hahn, MW .
BIOINFORMATICS, 2006, 22 (10) :1269-1271
[9]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[10]   OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy [J].
Emms, David M. ;
Kelly, Steven .
GENOME BIOLOGY, 2015, 16