Structural phases of classical 2D clusters with competing two-body and three-body interactions

被引:1
|
作者
Correia, Matheus, V [1 ]
Freitas, Emerson J. [1 ]
Cabral, Leonardo R. E. [1 ]
Silva, Clecio C. de Souza [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Ciencias Exatas & Nat, Dept Fis, BR-50670901 Recife, PE, Brazil
关键词
Wigner crystals; charged colloids; superconducting vortices; Coulomb clusters; many-body interactions; competing interactions; TRANSITIONS; FORCES;
D O I
10.1088/1361-648X/ace50e
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In modeling systems of interacting particles, many-body terms beyond pairwise interactions are often overlooked. Nevertheless, in certain scenarios, even small contributions from three-body or higher-order terms can disrupt significant changes in their collective behavior. Here we investigate the effects of three-body interactions on the structure and stability of 2D, harmonically confined clusters. We consider clusters with three distinct pairwise interactions: log r, 1/r, and e(-?r)/r, thus covering a wide range of condensed and soft matter systems, such as vortices in mesoscopic superconductors, charged colloids, and dusty plasma. In each case, we evaluate the energetics and normal mode spectra of equilibrium and metastable configurations as the intensity of an attractive, Gaussian three-body potential is varied. We demonstrate that, above a threshold value of the three-body energy strength, the cluster shrinks and eventually becomes self-sustained, that is, it remains cohesive after the confinement potential is shut down. Depending on the strengths of the two-body and three-body interaction terms, this compaction can be continuous or abrupt. The latter case is characterized by a discontinuous jump in the particle density and coexsitence of the compact and non-compact phases as metastable states, as in a first-order phase transition. For some values of the particle number, the compaction is preceded by one or more structural changes, resulting in configurations not usually seen in purely pairwise-additive clusters.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Two-body and three-body abrasive wear properties of katsura wood
    Ohtani, T
    Yakou, T
    Kitayama, S
    JOURNAL OF WOOD SCIENCE, 2001, 47 (02) : 87 - 93
  • [32] On replacing three-body abrasion testing with two-body abrasion testing
    Budinski, Kenneth G.
    Budinski, Steven T.
    WEAR, 2017, 376 : 1859 - 1865
  • [33] Three-body recombination calculations with a two-body mapped grid method
    Secker, T.
    Li, J-L
    Mestrom, P. M. A.
    Kokkelmans, S. J. J. M. F.
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [34] Two-Body and Three-Body Contacts for Identical Bosons near Unitarity
    Smith, D. Hudson
    Braaten, Eric
    Kang, Daekyoung
    Platter, Lucas
    PHYSICAL REVIEW LETTERS, 2014, 112 (11)
  • [35] Two-body and three-body abrasive wear properties of katsura wood
    Tadashi Ohtani
    Takao Yakou
    Shigeru Kitayama
    Journal of Wood Science, 2001, 47 : 87 - 93
  • [36] Two-body and three-body abrasive wear behaviour of polyaryletherketone composites
    Harsha, AP
    Tewari, US
    POLYMER TESTING, 2003, 22 (04) : 403 - 418
  • [37] Three-body interactions involving clusters and films
    Gatica, SM
    Calbi, MM
    Cole, MW
    Velegol, D
    PHYSICAL REVIEW B, 2003, 68 (20):
  • [38] Studies of charmless two-body, quasi-two-body and three-body B decays
    Champion, TJ
    HIGH ENERGY PHYSICS, VOLS I AND II, 2001, : 870 - 872
  • [39] The strain rate dependence of shear viscosity, pressure and energy from two-body and three-body interactions
    Marcelli, G
    Todd, BD
    Sadus, RJ
    FLUID PHASE EQUILIBRIA, 2001, 183 : 371 - 379
  • [40] Chaotic and regular behaviours of classical and fractional Gross-Pitaevskii equations including two-body, three-body and higher-order interactions
    Uzar, Neslihan
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (01):