Artificial intelligence in renal pathology: Current status and future

被引:11
作者
Feng, Chunyue [1 ,2 ]
Liu, Fei [1 ,2 ]
机构
[1] Zhejiang Univ, Childrens Hosp, Dept Nephrol, Sch Med, Hangzhou, Peoples R China
[2] Natl Clin Res Ctr Child Hlth, Hangzhou, Peoples R China
来源
BIOMOLECULES AND BIOMEDICINE | 2023年 / 23卷 / 02期
关键词
Artificial intelligence (AI); deep learning (DL); digital pathology; nephropathology; image analysis; convolutional neural networks (CNNs); WHOLE-SLIDE IMAGES; DIGITAL PATHOLOGY; KIDNEY; CLASSIFICATION; REPRODUCIBILITY; SEGMENTATION; FIBROSIS;
D O I
10.17305/bjbms.2022.8318
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Renal biopsy pathology is an essential gold standard for the diagnosis of most kidney diseases. With the increase in the incidence rate of kidney diseases, the lack of renal pathologists, and an imbalance in their distribution, there is an urgent need for a new renal pathological diagnosis model. Advances in artificial intelligence (AI) along with the growing digitization of pathology slides for diagnosis are promising approach to meet the demand for more accurate detection, classification, and prediction of the outcome of renal pathology. AI has contributed substantially to a variety of clinical applications, including renal pathology. Deep learning, a subfield of AI that is highly flexible and supports automatic feature extraction, is increasingly being used in multiple areas of pathology. In this narrative review, we first provide a general description of AI methods, and then discuss the current and prospective applications of AI in the field of renal pathology. Both diagnostic and predictive prognostic applications are covered, emphasizing AI in renal pathology images, predictive models, and 3D in renal pathology. Finally, we outline the challenges associated with the implementation of AI platforms in renal pathology and provide our perspective on how these platforms might change in this field.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 83 条
  • [1] Aeffner Famke, 2019, J Pathol Inform, V10, P9, DOI 10.4103/jpi.jpi_82_18
  • [2] Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections
    Altini, Nicola
    Cascarano, Giacomo Donato
    Brunetti, Antonio
    Marino, Francescomaria
    Rocchetti, Maria Teresa
    Matino, Silvia
    Venere, Umberto
    Rossini, Michele
    Pesce, Francesco
    Gesualdo, Loreto
    Bevilacqua, Vitoantonio
    [J]. ELECTRONICS, 2020, 9 (03)
  • [3] Applications of artificial intelligence in neuro-oncology
    Aneja, Sanjay
    Chang, Enoch
    Omuro, Antonio
    [J]. CURRENT OPINION IN NEUROLOGY, 2019, 32 (06) : 850 - 856
  • [4] Digital pathology and computational image analysis in nephropathology
    Barisoni, Laura
    Lafata, Kyle J.
    Hewitt, Stephen M.
    Madabhushi, Anant
    Balis, Ulysses G. J.
    [J]. NATURE REVIEWS NEPHROLOGY, 2020, 16 (11) : 669 - 685
  • [5] Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology
    Barisoni, Laura
    Gimpel, Charlotte
    Kain, Renate
    Laurinavicius, Arvydas
    Bueno, Gloria
    Zeng, Caihong
    Liu, Zhihong
    Schaefer, Franz
    Kretzler, Matthias
    Holzman, Lawrence B.
    Hewitt, Stephen M.
    [J]. CLINICAL KIDNEY JOURNAL, 2017, 10 (02) : 176 - 187
  • [6] Reproducibility of the NEPTUNE descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images
    Barisoni, Laura
    Troost, Jonathan P.
    Nast, Cynthia
    Bagnasco, Serena
    Avila-Casado, Carmen
    Hodgin, Jeffrey
    Palmer, Matthew
    Rosenberg, Avi
    Gasim, Adil
    Liensziewski, Chrysta
    Merlino, Lino
    Chien, Hui-Ping
    Chang, Anthony
    Meehan, Shane M.
    Gaut, Joseph
    Song, Peter
    Holzman, Lawrence
    Gibson, Debbie
    Kretzler, Matthias
    Gillespie, Brenda W.
    Hewitt, Stephen M.
    [J]. MODERN PATHOLOGY, 2016, 29 (07) : 671 - 684
  • [7] PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys
    Barros, George O.
    Navarro, Brenda
    Duarte, Angelo
    dos-Santos, Washington L. C.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Artificial intelligence and machine learning in nephropathology
    Becker, Jan U.
    Mayerich, David
    Padmanabhan, Meghana
    Barratt, Jonathan
    Ernst, Angela
    Boor, Peter
    Cicalese, Pietro A.
    Mohan, Chandra
    Nguyen, Hien V.
    Roysam, Badrinath
    [J]. KIDNEY INTERNATIONAL, 2020, 98 (01) : 65 - 75
  • [9] An innovative neural network framework to classify blood vessels and tubules based on Haralick features evaluated in histological images of kidney biopsy
    Bevilacqua, Vitoantonio
    Pietroleonardo, Nicola
    Triggiani, Vito
    Brunetti, Antonio
    Di Palma, Anna Maria
    Rossini, Michele
    Gesualdo, Loreto
    [J]. NEUROCOMPUTING, 2017, 228 : 143 - 153
  • [10] Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology
    Bouteldja, Nassim
    Klinkhammer, Barbara M.
    Buelow, Roman D.
    Droste, Patrick
    Otten, Simon W.
    Freifrau von Stillfried, Saskia
    Moellmann, Julia
    Sheehan, Susan M.
    Korstanje, Ron
    Menzel, Sylvia
    Bankhead, Peter
    Mietsch, Matthias
    Drummer, Charis
    Lehrke, Michael
    Kramann, Rafael
    Floege, Juergen
    Boor, Peter
    Merhof, Dorit
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (01): : 52 - 68