Non-Hermitian Weyl fermions of types III and IV: Hamiltonian, topological protection, and Landau levels

被引:6
作者
Alisultanov, Zaur Z. [1 ,2 ]
Idrisov, Edvin G. [3 ]
机构
[1] Moscow Inst Phys & Technol, ACTP, Dolgoprudnyi 141701, Moscow Region, Russia
[2] Russian Acad Sci, Inst Phys DFRS, Makhachkala 367015, Russia
[3] Univ Luxembourg, Dept Phys & Mat Sci, Esch Sur Alzette, Luxembourg
基金
俄罗斯科学基金会;
关键词
ENERGY-BANDS; SEMIMETAL; SYMMETRY; SOLIDS;
D O I
10.1103/PhysRevB.107.085135
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We adopt the non-Hermitian Hamiltonian formalism to describe Weyl fermions of types III and IV. The spectrum of Hamiltonian has an unusual type of anisotropy. Namely, the hermiticity of Hamiltonian strongly depends on the direction in momentum space: for some directions, the spectrum is real, in contrast for other directions it becomes complex. It is shown that the type III and IV Weyl points are topologically stable and the Chern number is equal to +/- 1 despite to the fact that the Hamiltonian is not Hermitian. Furthermore, we calculate the Landau levels and demonstrate that zero Landau level is real, which means that there is a real spectral flow between electronlike and holelike states. Due to the formal analogy with the index theorem, the presence of such a flow as well indicates a nonzero Chern number. In addition, we illustrate that the non-Hermitian Hamiltonian can be regarded as a one-particle problem in the context of topological band theory.
引用
收藏
页数:9
相关论文
共 45 条
  • [1] OVERLAP INTEGRALS FOR BLOCH ELECTRONS
    ANTONCIK, E
    LANDSBERG, PT
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1963, 82 (527): : 337 - &
  • [2] Weyl and Dirac semimetals in three-dimensional solids
    Armitage, N. P.
    Mele, E. J.
    Vishwanath, Ashvin
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [3] SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3.
    ATIYAH, MF
    PATODI, VK
    SINGER, IM
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) : 71 - 99
  • [4] Colloquium: Topological band theory
    Bansil, A.
    Lin, Hsin
    Das, Tanmoy
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
  • [5] Discovery of a new type of topological Weyl fermion semimetal state in MoxW1 - xTe2
    Belopolski, Ilya
    Sanchez, Daniel S.
    Ishida, Yukiaki
    Pan, Xingchen
    Yu, Peng
    Xu, Su-Yang
    Chang, Guoqing
    Chang, Tay-Rong
    Zheng, Hao
    Alidoust, Nasser
    Bian, Guang
    Neupane, Madhab
    Huang, Shin-Ming
    Lee, Chi-Cheng
    Song, You
    Bu, Haijun
    Wang, Guanghou
    Li, Shisheng
    Eda, Goki
    Jeng, Horng-Tay
    Kondo, Takeshi
    Lin, Hsin
    Liu, Zheng
    Song, Fengqi
    Shin, Shik
    Hasan, M. Zahid
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [6] Bender C M., 2019, PT SYMMETRY QUANTUM
  • [7] Exceptional topology of non-Hermitian systems
    Bergholtz, Emil J.
    Budich, Jan Carl
    Kunst, Flore K.
    [J]. REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
  • [8] Bernstein N, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.075212
  • [9] Topological nodal-line fermions in spin-orbit metal PbTaSe2
    Bian, Guang
    Chang, Tay-Rong
    Sankar, Raman
    Xu, Su-Yang
    Zheng, Hao
    Neupert, Titus
    Chiu, Ching-Kai
    Huang, Shin-Ming
    Chang, Guoqing
    Belopolski, Ilya
    Sanchez, Daniel S.
    Neupane, Madhab
    Alidoust, Nasser
    Liu, Chang
    Wang, BaoKai
    Lee, Chi-Cheng
    Jeng, Horng-Tay
    Zhang, Chenglong
    Yuan, Zhujun
    Jia, Shuang
    Bansil, Arun
    Chou, Fangcheng
    Lin, Hsin
    Hasan, M. Zahid
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] Experimental Realization of a Three-Dimensional Dirac Semimetal
    Borisenko, Sergey
    Gibson, Quinn
    Evtushinsky, Danil
    Zabolotnyy, Volodymyr
    Buechner, Bernd
    Cava, Robert J.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (02)