Uncertainty-aware physics-driven deep learning network for free-breathing liver fat and R2 quantification using self-gated stack-of-radial MRI

被引:9
作者
Shih, Shu-Fu [1 ,2 ]
Kafali, Sevgi Gokce [1 ,2 ]
Calkins, Kara L. [3 ]
Wu, Holden H. H. [1 ,2 ,4 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pediat, Los Angeles, CA USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
关键词
deep learning reconstruction; deep learning uncertainty; free-breathing radial MRI; liver; proton-density fat fraction; R-2*; NEURAL-NETWORK; IRON OVERLOAD; SEPARATION; DISEASE;
D O I
10.1002/mrm.29525
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop a deep learning-based method for rapid liver proton-density fat fraction (PDFF) and R-2* quantification with built-in uncertainty estimation using self-gated free-breathing stack-of-radial MRI. Methods: This work developed an uncertainty-aware physics-driven deep learning network (UP-Net) to (1) suppress radial streaking artifacts because of undersampling after self-gating, (2) calculate accurate quantitative maps, and (3) provide pixel-wise uncertainty maps. UP-Net incorporated a phase augmentation strategy, generative adversarial network architecture, and an MRI physics loss term based on a fat-water and R-2* signal model. UP-Net was trained and tested using free-breathing multi-echo stack-of-radial MRI data from 105 subjects. UP-Net uncertainty scores were calibrated in a validation dataset and used to predict quantification errors for liver PDFF and R-2* in a testing dataset. Results: Compared with images reconstructed using compressed sensing (CS), UP-Net achieved structural similarity index > 0.87 and normalized root mean squared error < 0.18. Compared with reference quantitative maps generated using CS and graph-cut (GC) algorithms, UP-Net achieved low mean differences (MD) for liver PDFF (-0.36%) and R-2* (-0.37 s(-1)). Compared with breath-holding Cartesian MRI results, UP-Net achieved low MD for liver PDFF (0.53%) and R-2* (6.75 s(-1)). UP-Net uncertainty scores predicted absolute liver PDFF and R-2* errors with low MD of 0.27% and 0.12 s(-1) compared to CS + GC results. The computational time for UP-Net was 79 ms/slice, whereas CS + GC required 3.2 min/slice. Conclusion: UP-Net rapidly calculates accurate liver PDFF and R-2* maps from self-gated free-breathing stack-of-radial MRI. The pixel-wise uncertainty maps from UP-Net predict quantification errors in the liver.
引用
收藏
页码:1567 / 1585
页数:19
相关论文
共 59 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]   Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver [J].
Aigner, Elmar ;
Weiss, Guenter ;
Datz, Christian .
WORLD JOURNAL OF HEPATOLOGY, 2015, 7 (02) :177-188
[3]   Separation of water and fat signal in whole-body gradient echo scans using convolutional neural networks [J].
Andersson, Jonathan ;
Ahlstrom, Hakan ;
Kullberg, Joel .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (03) :1177-1186
[4]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[5]   Free-breathing 3D stack-of-radial MRI quantification of liver fat and R2* in adults with fatty liver disease [J].
Armstrong, Tess ;
Zhong, Xiaodong ;
Shih, Shu-Fu ;
Felker, Ely ;
Lu, David S. ;
Dale, Brian M. ;
Wu, Holden H. .
MAGNETIC RESONANCE IMAGING, 2022, 85 :141-152
[6]   Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique [J].
Armstrong, Tess ;
Ly, Karrie V. ;
Murthy, Smruthi ;
Ghahremani, Shahnaz ;
Kim, Grace Hyun J. ;
Calkins, Kara L. ;
Wu, Holden H. .
PEDIATRIC RADIOLOGY, 2018, 48 (07) :941-953
[7]   Free-breathing liver fat quantification using a multiecho 3D stack-of-radial technique [J].
Armstrong, Tess ;
Dregely, Isabel ;
Stemmer, Alto ;
Han, Fei ;
Natsuaki, Yutaka ;
Sung, Kyunghyun ;
Wu, Holden H. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (01) :370-382
[8]   Iron overload syndromes and the liver [J].
Batts, Kenneth P. .
MODERN PATHOLOGY, 2007, 20 :S31-S39
[9]   Robust water-fat separation for multi-echo gradient-recalled echo sequence using convolutional neural network [J].
Cho, JaeJin ;
Park, HyunWook .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (01) :476-484
[10]   Fat Water Decomposition Using GlObally Optimal Surface Estimation (GOOSE) Algorithm [J].
Cui, Chen ;
Wu, Xiaodong ;
Newell, John D. ;
Jacob, Mathews .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (03) :1289-1299