Non-Hermitian topological magnonics

被引:23
作者
Yu, Tao [1 ]
Zou, Ji [2 ]
Zeng, Bowen [1 ,3 ]
Rao, J. W. [4 ]
Xia, Ke [5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[2] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[3] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410114, Peoples R China
[4] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[5] Southeast Univ, Sch Phys, Nanjing 211189, Jiangsu, Peoples R China
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2024年 / 1062卷
基金
中国国家自然科学基金;
关键词
Non-Hermitian topology; Magnons; Magnonic devices; Dissipation; Gain; Dissipative coupling; Non-Hermitian Hamiltonian; Self-energy; Lindbladian; Quantum jump; Exceptional points; Exceptional surfaces; Exceptional nodal phases; Non-Hermitian SSH model; Non-Hermitian skin effect; PARITY-TIME SYMMETRY; SPIN-TORQUE; MAGNETIC MULTILAYER; EXCEPTIONAL POINTS; ROOM-TEMPERATURE; PHASE; DRIVEN; DYNAMICS; ANISOTROPY; TRANSPORT;
D O I
10.1016/j.physrep.2024.01.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dissipation in mechanics, optics, acoustics, and electronic circuits is nowadays recognized to be not always detrimental but can be exploited to achieve non -Hermitian topological phases or properties with functionalities for potential device applications, ranging from sensors with unprecedented sensitivity, energy funneling, wave isolators, non -reciprocal signal amplification, to dissipation induced phase transition. As elementary excitations of ordered magnetic moments that exist in various magnetic materials, magnons are the information carriers in magnonic devices with low -energy consumption for reprogrammable logic, non -reciprocal communication, and non-volatile memory functionalities. Non -Hermitian topological magnonics deals with the engineering of dissipation and/or gain for non -Hermitian topological phases or properties in magnets that are not achievable in the conventional Hermitian scenario, with associated functionalities cross-fertilized with their electronic, acoustic, optic, and mechanic counterparts, such as giant enhancement of magnonic frequency combs, magnon amplification, (quantum) sensing of the magnetic field with unprecedented sensitivity, magnon accumulation, and perfect absorption of microwaves. In this review article, we address the unified approach in constructing magnonic non -Hermitian Hamiltonian, introduce the basic non -Hermitian topological physics, and provide a comprehensive overview of the recent theoretical and experimental progress towards achieving distinct non -Hermitian topological phases or properties in magnonic devices, including exceptional points, exceptional nodal phases, non -Hermitian magnonic SSH model, and non -Hermitian skin effect. We emphasize the non -Hermitian Hamiltonian approach based on the Lindbladian or self -energy of the magnonic subsystem but address the physics beyond it as well, such as the crucial quantum jump effect in the quantum regime and non-Markovian dynamics. We provide a perspective for future opportunities and challenges before concluding this article. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 86
页数:86
相关论文
共 573 条
[1]  
Lidar DA, 2020, Arxiv, DOI arXiv:1902.00967
[2]   C-, PT- and CPT-invariance of pseudo-Hermitian Hamiltonians [J].
Ahmed, Z .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (37) :9711-9719
[3]   Pseudo-reality and pseudo-adjointness of Hamiltonians [J].
Ahmed, Z .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (41) :10325-10333
[4]   Topological Properties of Linear Circuit Lattices [J].
Albert, Victor V. ;
Glazman, Leonid I. ;
Jiang, Liang .
PHYSICAL REVIEW LETTERS, 2015, 114 (17)
[5]  
Altland A., 2010, Condensed Matter Field Theory
[6]   Bright and Dark States of Two Distant Macrospins Strongly Coupled by Phonons [J].
An, K. ;
Kohno, R. ;
Litvinenko, A. N. ;
Seeger, R. L. ;
Naletov, V. V. ;
Vila, L. ;
de Loubens, G. ;
Ben Youssef, J. ;
Vukadinovic, N. ;
Bauer, G. E. W. ;
Slavin, A. N. ;
Tiberkevich, V. S. ;
Klein, O. .
PHYSICAL REVIEW X, 2022, 12 (01)
[7]   Coherent long-range transfer of angular momentum between magnon Kittel modes by phonons [J].
An, K. ;
Litvinenko, A. N. ;
Kohno, R. ;
Fuad, A. A. ;
Naletov, V. V. ;
Vila, L. ;
Ebels, U. ;
de Loubens, G. ;
Hurdequint, H. ;
Beaulieu, N. ;
Ben Youssef, J. ;
Vukadinovic, N. ;
Bauer, G. E. W. ;
Slavin, A. N. ;
Tiberkevich, V. S. ;
Klein, O. .
PHYSICAL REVIEW B, 2020, 101 (06)
[8]   Slonczewski spin-torque as negative damping: Fokker-Planck computation of energy distribution [J].
Apalkov, DM ;
Visscher, PB .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 286 :370-374
[9]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[10]  
Asb?th J.K., 2016, SHORT COURSE TOPOLOG, V919, P166