Enhancing the performance of metallic lithium anode in batteries through water-resistant and air-stable coating

被引:9
作者
Chen, Yue-Sheng [1 ,2 ]
Chang, Wen-Hsin [1 ]
Kuo, Tzu-Yu [3 ]
Chang, Jeng-Kuei [3 ]
Su, Yu-Sheng [1 ,4 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Int Coll Semicond Technol, 1001 Daxue Rd, Hsinchu 30010, Taiwan
[2] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[3] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Ind Acad Innovat Sch, 1001 Daxue Rd, Hsinchu 30010, Taiwan
关键词
Wax; Silica; Composite coating; lithium metal batteries; Artificial SEI; lithium dendrite; ELECTROLYTE; SAFE; LAYER;
D O I
10.1016/j.est.2024.110532
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The limited reversibility and high reactivity of lithium metal with the liquid electrolyte in lithium batteries hinder its widespread adoption. The formation of an unstable solid electrolyte interphase layer and the sensitivity of lithium metal to moisture and air are major issues that need to be addressed. To overcome the practical challenges associated with the application of lithium anodes in lithium metal batteries, a well-thought-out design of a protective layer is proposed. Here, we have developed a composite coating comprising polyvinylidene fluoride, fumed colloidal silica, and paraffin wax as a protective layer for lithium metal anodes. The coating exhibits excellent electrochemical stability, high ionic conductivity, and mechanical stability, effectively suppressing dendrite growth and accommodating lithium volume changes during cycling. Moreover, the hydrophobic wax component can mitigate the atmospheric sensitivity of metallic lithium anodes. The coating process employed is facile and economically viable, significantly enhancing the scalability of lithium metal batteries. Experimental characterizations confirm the structure and composition of the coating, and electrochemical measurements demonstrate the improved electrochemical performance and cyclability of the coated lithium metal anodes. The results indicate that the developed composite coating has great potential for enhancing the electrochemical and processing stability of metallic lithium anodes for lithium metal batteries.
引用
收藏
页数:9
相关论文
共 49 条
[11]   Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives [J].
Han, Yiyao ;
Liu, Bo ;
Xiao, Zhen ;
Zhang, Wenkui ;
Wang, Xiuli ;
Pan, Guoxiang ;
Xia, Yang ;
Xia, Xinhui ;
Tu, Jiangping .
INFOMAT, 2021, 3 (02) :155-174
[12]   A Protective Layer for Lithium Metal Anode: Why and How [J].
Han, Zhiyuan ;
Zhang, Chen ;
Lin, Qiaowei ;
Zhang, Yunbo ;
Deng, Yaqian ;
Han, Junwei ;
Wu, Dingcai ;
Kang, Feiyu ;
Yang, Quan-Hong ;
Lv, Wei .
SMALL METHODS, 2021, 5 (04)
[13]   Challenges in Lithium Metal Anodes for Solid-State Batteries [J].
Hatzell, Kelsey B. ;
Chen, Xi Chelsea ;
Cobb, Corie L. ;
Dasgupta, Neil P. ;
Dixit, Marm B. ;
Marbella, Lauren E. ;
McDowell, Matthew T. ;
Mukherjee, Partha P. ;
Verma, Ankit ;
Viswanathan, Venkatasubramanian ;
Westover, Andrew S. ;
Zeier, Wolfgang G. .
ACS ENERGY LETTERS, 2020, 5 (03) :922-934
[14]   In-situ organic SEI layer for dendrite-free lithium metal anode [J].
Kang, Danmiao ;
Sardar, Saydual ;
Zhang, Rui ;
Noam, Hart ;
Chen, Jingyun ;
Ma, Linge ;
Liang, Wenbin ;
Shi, Chunsheng ;
Lemmon, John P. .
ENERGY STORAGE MATERIALS, 2020, 27 :69-77
[15]   Li4SiO4-Based Artificial Passivation Thin Film for Improving Interfacial Stability of Li Metal Anodes [J].
Kim, Ji Young ;
Kim, A-Young ;
Liu, Guicheng ;
Woo, Jae-Young ;
Kim, Hansung ;
Lee, Joong Kee .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (10) :8692-8701
[16]   Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries [J].
Krauskopf, Thorben ;
Richter, Felix H. ;
Zeier, Wolfgang G. ;
Janek, Juergen .
CHEMICAL REVIEWS, 2020, 120 (15) :7745-7794
[17]   One-pot solution coating of high quality LiF layer to stabilize Li metal anode [J].
Lang, Jialiang ;
Long, Yuanzheng ;
Qu, Jiale ;
Luo, Xinyi ;
Wei, Hehe ;
Huang, Kai ;
Zhang, Haitian ;
Qi, Longhao ;
Zhang, Qianfan ;
Li, Zhengcao ;
Wu, Hui .
ENERGY STORAGE MATERIALS, 2019, 16 :85-90
[18]   Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes [J].
Li, Chuanfa ;
Liu, Shaohong ;
Shi, Chenguang ;
Liang, Ganghao ;
Lu, Zhitao ;
Fu, Ruowen ;
Wu, Dingcai .
NATURE COMMUNICATIONS, 2019, 10 (1)
[19]   3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries [J].
Li, Qi ;
Zhu, Shoupu ;
Lu, Yingying .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (18)
[20]   Air-Stable Protective Layers for Lithium Anode Achieving Safe Lithium Metal Batteries [J].
Li, Runjing ;
Fan, Yining ;
Zhao, Chuan ;
Hu, Anjun ;
Zhou, Bo ;
He, Miao ;
Chen, Jiahao ;
Yan, Zhongfu ;
Pan, Yu ;
Long, Jianping .
SMALL METHODS, 2023, 7 (01)