Phosphides-Based Terahertz Quantum-Cascade Laser

被引:4
作者
Ushakov, Dmitrii V. [1 ]
Afonenko, Alexander A. [1 ]
Khabibullin, Rustam A. [2 ,3 ]
Fadeev, Mikhail A. [4 ]
Dubinov, Alexander A. [4 ,5 ]
机构
[1] Belarusian State Univ, Fac Radiophys & Comp Technol, 4 Nezavisimosti Ave, Minsk 220030, BELARUS
[2] RAS, VG Mokerov Inst Ultrahigh Frequency Semicond Elect, 7-5 Nagornyy Proezd, Moscow 117105, Russia
[3] Moscow Inst Phys & Technol, 9 Inst Sky Lane, Dolgoprudnyi 141701, Russia
[4] Russian Acad Sci, Inst Phys Microstruct, Semicond Dept, GSP-105, Nizhnii Novgorod 603950, Russia
[5] Lobachevsky State Univ Nizhny Novgorod, Fac Radiophys, 23 Gagarina Ave, Nizhnii Novgorod 603950, Russia
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2024年 / 18卷 / 05期
基金
俄罗斯科学基金会;
关键词
GaAs phonon absorption band region; phosphides; quantum cascade laser; terahertz; OPTICAL-PROPERTIES; GAAS; SCATTERING; TRANSPORT; SPECTRA; STRAIN; LAYERS; WELLS; FE; AL;
D O I
10.1002/pssr.202300392
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to their high optical phonon energies GaInP/AlGaInP heterostructures are a promising active medium to solve the problem of creating compact semiconductor sources with an operating frequency range of 5.5-7 THz. In this work, the temperature dependences of gain and absorption at 6.4-6.9 THz have been calculated for a GaInP/AlGaInP-based quantum-cascade laser (QCL) with two quantum wells in the cascade and a metal-metal waveguide. The dielectric function and mode losses for a 10 mu m thick Au-Au waveguide, based on ternary InGaP and quaternary AlGaInP semiconductors, have been investigated in details. A laser structure that provides a mode gain of over 100 cm-1 with a maximum operating temperature about 100 K is proposed. The results of this study open the way to the development of a QCL for operation in a significant part of the GaAs phonon absorption band region, which is inaccessible for existing QCLs. The GaInP/AlGaInP heterostructures have higher optical phonon energies compared to GaAs/AlGaAs heterostructures. We propose a scheme of phosphides-based terahertz quantum cascade laser. The proposed design has opportunity of operation in a significant part of the GaAs phonon absorption band region, which is inaccessible for existing quantum cascade lasers (QCLs).image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:5
相关论文
共 41 条
[1]  
Al-Douseri FM, 2006, INT J INFRARED MILLI, V27, P481, DOI [10.1007/s10762-006-9102-y, 10.1007/s10762-006-9102-v]
[2]   RAMAN-SCATTERING IN INGAAIP LAYERS GROWN BY MOLECULAR-BEAM EPITAXY [J].
ASAHI, H ;
EMURA, S ;
GONDA, S ;
KAWAMURA, Y ;
TANAKA, H .
JOURNAL OF APPLIED PHYSICS, 1989, 65 (12) :5007-5011
[3]   Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors [J].
Bellotti, Enrico ;
Driscoll, Kristina ;
Moustakas, Theodore D. ;
Paiella, Roberto .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[4]   Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials [J].
Cunningham, Paul D. ;
Valdes, Nestor N. ;
Vallejo, Felipe A. ;
Hayden, L. Michael ;
Polishak, Brent ;
Zhou, Xing-Hua ;
Luo, Jingdong ;
Jen, Alex K. -Y. ;
Williams, Jarrod C. ;
Twieg, Robert J. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
[5]   Thin active region HgCdTe-based quantum cascade laser with quasi-relativistic dispersion law [J].
Dubinov, A. A. ;
Ushakov, D., V ;
Afonenko, A. A. ;
Khabibullin, R. A. ;
Fadeev, M. A. ;
Morozov, S., V .
OPTICS LETTERS, 2022, 47 (19) :5048-5051
[6]   Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-layer structure [J].
Dubinov, Alexander A. ;
Bylinkin, Andrey ;
Aleshkin, Vladimir Ya. ;
Ryzhii, Victor ;
Otsuji, Taiichi ;
Svintsov, Dmitry .
OPTICS EXPRESS, 2016, 24 (26) :29603-29612
[7]   Terahertz Spectroscopic Analysis of Peptides and Proteins [J].
Falconer, Robert J. ;
Markelz, Andrea G. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2012, 33 (10) :973-988
[8]   Optical functions of InGaP/GaAs epitaxial layers from 0.01 to 5.5 eV [J].
Ferrini, R ;
Guizzetti, G ;
Patrini, M ;
Parisini, A ;
Tarricone, L ;
Valenti, B .
EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (04) :449-458
[9]  
Flores YV, 2017, IEEE J QUANTUM ELECT, V53, DOI [10.1109/jqe.2017.2732404, 10.1109/JQE.2017.2689743]
[10]   Impact of interface roughness distributions on the operation of quantum cascade lasers [J].
Franckie, Martin ;
Winge, David O. ;
Wolf, Johanna ;
Liverini, Valeria ;
Dupont, Emmanuel ;
Trinite, Virginie ;
Faist, Jerome ;
Wacker, Andreas .
OPTICS EXPRESS, 2015, 23 (04) :5201-5212