Positive solutions of biharmonic elliptic problems with a parameter

被引:2
作者
Chen, Haiping [1 ]
Feng, Meiqiang [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Singular biharmonic equation; Navier boundary conditions; Positive solution; Existence; Nonexistence and multiplicity; Fixed point theory; SIGN-CHANGING SOLUTIONS; NONTRIVIAL SOLUTIONS; EXISTENCE; EQUATIONS; UNIQUENESS; MULTIPLICITY; THEOREMS;
D O I
10.1007/s13324-023-00860-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we analyze the existence, multiplicity and nonexistence of positive solutions for a class of biharmonic equations with Navier boundary conditions and a parameter. In addition, some new criteria for the existence, multiplicity and nonexistence of positive radial solutions for a singular biharmonic equation are also investigated. Our approaches use fixed point theorems on cones.
引用
收藏
页数:36
相关论文
共 53 条
[1]  
Abid I, 2008, DIFFER INTEGRAL EQU, V21, P653
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]   A semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, G ;
Gazzola, F ;
Grunau, HC ;
Mitidieri, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1226-1258
[4]   Asymptotic proximity to higher order nonlinear differential equations [J].
Astashova, Irina ;
Bartusek, Miroslav ;
Dosla, Zuzana ;
Marini, Mauro .
ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) :1598-1613
[5]   NONNEGATIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE NONLINEAR ELLIPTIC EQUATIONS IN BOUNDED DOMAINS OF Rn [J].
Bachar, Imed ;
Maagli, Habib ;
Eltayeb, Hassan .
OPUSCULA MATHEMATICA, 2022, 42 (06) :793-803
[6]   A note on a class of higher order conformally covariant equations [J].
Chang, SYA ;
Chen, WX .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (02) :275-281
[7]   Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations [J].
Chen, Y ;
McKenna, PJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) :325-355
[8]   POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-SYSTEMS [J].
CLEMENT, P ;
DEFIGUEIREDO, DG ;
MITIDIERI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :923-940
[9]   Neumann Eigenvalues of the Biharmonic Operator on Domains: Geometric Bounds and Related Results [J].
Colbois, Bruno ;
Provenzano, Luigi .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (08)
[10]   A COMPARISON PRINCIPLE FOR A CLASS OF 4TH-ORDER ELLIPTIC-OPERATORS [J].
COSNER, C ;
SCHAEFER, PW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 128 (02) :488-494