Optimal transport for some symmetric, multidimensional integer partitions

被引:0
作者
Adu, Daniel Owusu [1 ]
Keliher, Daniel [1 ]
机构
[1] Univ Georgia, Athens, GA 30602 USA
关键词
Optimal transport; Integer partitions;
D O I
10.1016/j.dam.2023.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A result of Hohloch links the theory of integer partitions with the Monge formulation of the optimal transport problem, giving the optimal transport map between (Young diagrams of) integer partitions and their corresponding symmetric partitions. Our aim is to extend Hohloch's result to the higher dimensional case. In doing so, we show the Kantorovich formulation of the optimal transport problem provides the tool to study the matching of higher dimensional partitions with their corresponding symmetric partitions.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 15 条
[1]  
Adu DO, 2023, Arxiv, DOI arXiv:2309.06350
[2]   Optimal Transport for Averaged Control [J].
Adu, Daniel Owusu .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :727-732
[3]   Optimal Transport for a Class of Linear Quadratic Differential Games [J].
Adu, Daniel Owusu ;
Basar, Tamer ;
Gharesifard, Bahman .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (11) :6287-6294
[4]  
Ambrosio L, 2003, LECT NOTES MATH, V1813, P123
[5]   Optimal Transport in Systems and Control [J].
Chen, Yongxin ;
Georgiou, Tryphon T. ;
Pavon, Michele .
ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 :89-113
[6]  
Galichon A., 2018, Optimal Transport Methods in Economics
[7]   Optimal transport and integer partitions [J].
Hohloch, Sonja .
DISCRETE APPLIED MATHEMATICS, 2015, 190 :75-85
[8]  
Kantorovich L.V., 1948, Uspekhi Mat. Nauk., V3, P225
[9]   ON THE OPTIMAL MAPPING OF DISTRIBUTIONS [J].
KNOTT, M ;
SMITH, CS .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1984, 43 (01) :39-49
[10]  
Monge G., 1781, Memoires de Mathematique et de Physique, Presentes a l'Academie Royale des Sciences, P666