Wide-angle high-precision electronically controlled continuous beam scanning implementation based on MLAS cascaded AFOC

被引:2
作者
Zhou, Xin [1 ,2 ,3 ]
Yang, Xu [1 ,2 ]
Jiang, Jiali [1 ,2 ]
Li, Ziqiang [1 ,2 ]
Zou, Fan [1 ,2 ,3 ]
Li, Yuting [1 ,2 ,3 ]
Xu, Feifei [1 ,2 ,3 ]
Li, Feng [1 ,2 ]
Geng, Chao [1 ,2 ,3 ]
Li, Xinyang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Adapt Opt, Chengdu 610209, Sichuan, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Sichuan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Beam scanning system; Bimorph actuator; Continuous beam scanning; Microlens array; DESIGN; ARRAYS; SYSTEM;
D O I
10.1016/j.optlaseng.2023.107926
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microlens array scanner (MLAS), as a rapidly growing branch of the semisolid micro-mechanical beam scanning system, can achieve large-scale beam scanning through small-scale (mu m) physical motion, which is an effective beam scanning scheme that balances aperture, field of view (FOV), inertia, and other vital indicators. However, the discrete addressing caused by the periodic structure of microlens array (MLA) will affect the scanning accuracy in applications. We design and develop a continuous laser beam scanning device with an effective aperture of 20 mm based on MLAS and adaptive fiber collimator (AFOC), and the scanning beam quality is close to the diffraction limit. In addition, the electrical control mechanism of the device is explained, which achieves a scan FOV of 20 degrees, a scan angular velocity of 10,000 degrees /s, and two-dimensional (2D) scan. This approach effectively realizes a beam scanning system with excellent comprehensive performance, including large aperture, large scan angle, high precision, high speed, tunable wavelength, and high power.
引用
收藏
页数:7
相关论文
共 42 条
[1]   Design and Control of a Magnetic Laser Scanner for Endoscopic Microsurgeries [J].
Acemoglu, Alperen ;
Pucci, Daniele ;
Mattos, Leonardo S. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2019, 24 (02) :527-537
[2]   Design and optimization of microlens array based high resolution beam steering system [J].
Akatay, Ata ;
Urey, Hakan .
OPTICS EXPRESS, 2007, 15 (08) :4523-4529
[3]   High-resolution beam steering using microlens arrays [J].
Akatay, Ata ;
Ataman, Caglar ;
Urey, Hakan .
OPTICS LETTERS, 2006, 31 (19) :2861-2863
[4]  
Bourderionnet J., 2008, Proceedings of the SPIE - The International Society for Optical Engineering, V7113, DOI 10.1117/12.800120
[5]   A Semisolid Micromechanical Beam Steering System Based on Micrometa-Lens Arrays [J].
Chen, Rui ;
Shao, Yifan ;
Zhou, Yi ;
Dang, Yongdi ;
Dong, Hongguang ;
Zhang, Sen ;
Wang, Yubo ;
Chen, Jian ;
Ju, Bing-Feng ;
Ma, Yungui .
NANO LETTERS, 2022, 22 (04) :1595-1603
[6]   Implementation of field lens arrays in beam-deflecting microlens array telescopes [J].
Duparré, J ;
Radtke, D ;
Dannberg, P .
APPLIED OPTICS, 2004, 43 (25) :4854-4861
[7]   A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive [J].
Fatemi, Reza ;
Khachaturian, Aroutin ;
Hajimiri, Ali .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (05) :1200-1215
[8]  
FLOOD KM, 1990, P SOC PHOTO-OPT INS, V1211, P296, DOI 10.1117/12.17959
[9]   Optical inter-orbit communications engineering test satellite (OICETS) [J].
Fujiwara, Yuuichi ;
Mokuno, Masaaki ;
Jono, Takashi ;
Yamawaki, Toshihiko ;
Arai, Katsuyoshi ;
Toyoshima, Morio ;
Kunimori, Hiroo ;
Sodnik, Z. ;
Bird, A. ;
Demelenne, B. .
ACTA ASTRONAUTICA, 2007, 61 (1-6) :163-175
[10]   Analysis and design of a microlens array scanning system based on spherical aberration [J].
Ge, Zenghui ;
Liu, Zhiying ;
Huang, Yunhan ;
Lv, Zhiyang .
APPLIED OPTICS, 2023, 62 (01) :227-234