Sprinkler Irrigation Automation System to Reduce the Frost Impact Using Machine Learning

被引:0
作者
Yauri, Ricardo [1 ,2 ]
Llerena, Oscar [3 ]
Santiago, Jorge [4 ]
Gonzales, Jean [4 ]
机构
[1] Univ Tecnol Peru, Fac Engn, Lima, Peru
[2] Univ Nacl Mayor San Marcos, Fac Syst & Informat Engn, Lima, Peru
[3] Seoul Natl Univ Sci & Technol, Comp Sci & Engn, Seoul, South Korea
[4] Univ Nacl Mayor San Marcos, Fac Elect & Elect Engn, Lima, Peru
关键词
Frost; machine learning; sprinkler irrigation; random forests; linear regression; decision trees;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Frosts reduce the ambient temperature to the freezing point of water, affecting the agricultural sector and the integrity of plant tissues, severely damaged by freezing, destroying plant cells. In addition, losses are generated in the economy due to the death of cattle due to cold, hunger, diseases, etc. Latin America is a region that depends, to a considerable extent, on its crops for its consumption and export, so frost represents an urgent problem to solve, considering that in Peril the area of agriculture is not technical. Among the methods most used by farmers is anticipated irrigation, through automatic learning techniques, which allows predicting the behavior of a variable based on previous historical data. In this paper, sprinkler irrigation is implemented in crops exposed to frost, using an automated system with machine learning techniques and prediction models. Therefore, three types of models are evaluated (linear regression, random forests, and decision trees) to predict the occurrence of frosts, reducing damage to plants. The results show that the protection activation indicator from 1.1 degrees C to 1.7 degrees C was updated to decrease the number of false positives. On the three models evaluated, it is determined that the most accurate method is the Random Forest Regression method, which has 80.91% reliability, absolute mean error, and mean square error close to zero.
引用
收藏
页码:811 / 819
页数:9
相关论文
共 32 条
[1]  
Alfaro Lozano L., 2015, Nota Tecnica 005 SENAMHI- DGM-2015
[2]   A Methodology Based on Machine Learning and Soft Computing to Design More Sustainable Agriculture Systems [J].
Cadenas, Jose M. ;
Garrido, M. Carmen ;
Martinez-Espana, Raquel .
SENSORS, 2023, 23 (06)
[3]  
Castellanos Mestizo C. C., 2021, Sistema para la proteccion de cultivos soterrados y terrestres contra las heladas en la Sabana de Bogota para el ano 2050
[4]  
Corina G., Analisis del riesgo por heladas en zonas alpaqueras al sur del Peru
[5]  
Dani P., 2018, International Journal of Advanced Computer Science and Applications, V9
[6]  
Fundacion para la Innovacion Agraria, 2016, Heladas: tipos, medidas de prevencion y manejos posteriores al dano. Guia y uso del sitio
[7]   Selection of potato cultivars (Solanum tuberosum L.) resistant to drought and frost in Bolivia [J].
Gabriel Ortega, Julio ;
Magne Calizaya, Jury ;
Angulo Fernandez, Ada ;
Veramendi Torrico, Silene .
REVISTA LATINOAMERICANA DE LA PAPA, 2020, 24 (02) :17-34
[8]  
Gay W., 2018, Advanced Raspberry Pi
[9]   Current status of and future opportunities for digital agriculture in Australia [J].
Hansen, B. D. ;
Leonard, E. ;
Mitchell, M. C. ;
Easton, J. ;
Shariati, N. ;
Mortlock, M. Y. ;
Schaefer, M. ;
Lamb, D. W. .
CROP & PASTURE SCIENCE, 2023, 74 (06) :524-537
[10]   Frost Forecasting considering Geographical Characteristics [J].
Kim, Hyojeoung ;
Kim, Jong-Min ;
Kim, Sahm .
ADVANCES IN METEOROLOGY, 2022, 2022