Multisource hierarchical neural network for knowledge graph embedding

被引:10
|
作者
Jiang, Dan [1 ]
Wang, Ronggui [1 ]
Xue, Lixia [1 ]
Yang, Juan [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, 420 Jade Rd, Hefei 230601, Peoples R China
基金
国家重点研发计划;
关键词
Link prediction; Knowledge graph embedding; Multisource knowledge information; Hierarchical embedding network; Highway MLP;
D O I
10.1016/j.eswa.2023.121446
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Link prediction for knowledge graphs aims to obtain missing nodes in triples. In recent years, link prediction methods have made specific achievements in knowledge graph embedding. However, knowledge graphs are characteristic of the heterogeneity of multiple types of entities and relations. A vital issue is efficiently extracting complex graph information and constructing a knowledge-semantic fusion of multiple features. To overcome these issues, a novel link prediction framework based on a multisource hierarchical neural network for knowledge graph embedding (MSHE) is proposed. In particular, mapping functions obtain entities and relations from low-to high-dimensional mapping sources. The combination of mapping sources and entity-relation sources constitutes multisource knowledge information, which facilitates the integration of complex heterogeneous entities and relations. Unlike training a single independent network, the hierarchical embedding network proposed in this paper accumulates feature information at multiple levels. Then, to fuse feature information, our Highway multilayer perceptron (MLP) inductively generates high-quality knowledge information. Through extensive experiments, MSHE's knowledge graph embedding outperformed the state-of-the-art baselines on FB15k-237 and YAGO3-10. Furthermore, MSHE achieves a Hits@10 score that is 3.8% and 2.7% higher than that of ComplexGCN on FB15K-237 and WN18RR, respectively. MSHE achieves a higher score in Hits@1 than DCN 10.0% in the dataset YAGO3-10. The experiments show that the MSHE achieved excellent results in the four datasets of comparative experiments.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Knowledge Graph Representation via Hierarchical Hyperbolic Neural Graph Embedding
    Wang, Shen
    Wei, Xiaokai
    dos Santos, Cicero Nogueira
    Wang, Zhiguo
    Nallapati, Ramesh
    Arnold, Andrew
    Yu, Philip S.
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 540 - 549
  • [2] Heterogeneous Graph Neural Network with Hypernetworks for Knowledge Graph Embedding
    Liu, Xiyang
    Zhu, Tong
    Tan, Huobin
    Zhang, Richong
    SEMANTIC WEB - ISWC 2022, 2022, 13489 : 284 - 302
  • [3] Decoupled semantic graph neural network for knowledge graph embedding
    Li, Zhifei
    Huang, Wei
    Gong, Xuchao
    Luo, Xiangyu
    Xiao, Kui
    Deng, Honglian
    Zhang, Miao
    Zhang, Yan
    NEUROCOMPUTING, 2025, 611
  • [4] Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network
    Chen, Zhen-Yu
    Liu, Feng-Chi
    Wang, Xin
    Lee, Cheng-Hsiung
    Lin, Ching-Sheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4287 - 4300
  • [5] Multiview feature augmented neural network for knowledge graph embedding
    Jiang, Dan
    Wang, Ronggui
    Xue, Lixia
    Yang, Juan
    KNOWLEDGE-BASED SYSTEMS, 2022, 255
  • [6] A Triple-Branch Neural Network for Knowledge Graph Embedding
    Han, Xiao
    Zhang, Chunhong
    Sun, Tingting
    Ji, Yang
    Hu, Zheng
    IEEE ACCESS, 2018, 6 : 76606 - 76615
  • [7] Relational Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion
    Zhang, Zhao
    Zhuang, Fuzhen
    Zhu, Hengshu
    Shi, Zhiping
    Xiong, Hui
    He, Qing
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9612 - 9619
  • [8] Embedding Hierarchical Tree Structure of Concepts in Knowledge Graph Embedding
    Yu, Jibin
    Zhang, Chunhong
    Hu, Zheng
    Ji, Yang
    ELECTRONICS, 2024, 13 (22)
  • [9] MHRN: A multi-perspective hierarchical relation network for knowledge graph embedding
    Xue, Zengcan
    Zhang, Zhaoli
    Liu, Hai
    Li, Zhifei
    Han, Shuyun
    Zhang, Erqi
    KNOWLEDGE-BASED SYSTEMS, 2025, 313
  • [10] Entity-relation aggregation mechanism graph neural network for knowledge graph embedding
    Xu, Guoshun
    Rao, Guozheng
    Zhang, Li
    Cong, Qing
    APPLIED INTELLIGENCE, 2025, 55 (01)