All-ferroelectric implementation of reservoir computing

被引:87
作者
Chen, Zhiwei [1 ,2 ]
Li, Wenjie [1 ,2 ]
Fan, Zhen [1 ,2 ]
Dong, Shuai [1 ,2 ]
Chen, Yihong [1 ,2 ]
Qin, Minghui [1 ,2 ]
Zeng, Min [1 ,2 ]
Lu, Xubing [1 ,2 ]
Zhou, Guofu [3 ]
Gao, Xingsen [1 ,2 ]
Liu, Jun-Ming [1 ,2 ,4 ]
机构
[1] South China Normal Univ, South China Acad Adv Optoelect, Inst Adv Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Natl Ctr Int Res Green Optoelect, Guangzhou 510006, Peoples R China
[4] Nanjing Univ, Innovat Ctr Adv Microstruct, Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-023-39371-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reservoir computing (RC) offers efficient temporal information processing with low training cost. All-ferroelectric implementation of RC is appealing because it can fully exploit the merits of ferroelectric memristors (e.g., good controllability); however, this has been undemonstrated due to the challenge of developing ferroelectric memristors with distinctly different switching characteristics specific to the reservoir and readout network. Here, we experimentally demonstrate an all-ferroelectric RC system whose reservoir and readout network are implemented with volatile and nonvolatile ferroelectric diodes (FDs), respectively. The volatile and nonvolatile FDs are derived from the same Pt/BiFeO3/SrRuO3 structure via the manipulation of an imprint field (E-imp). It is shown that the volatile FD with E-imp exhibits short-term memory and nonlinearity while the nonvolatile FD with negligible E-imp displays long-term potentiation/depression, fulfilling the functional requirements of the reservoir and readout network, respectively. Hence, the all-ferroelectric RC system is competent for handling various temporal tasks. In particular, it achieves an ultralow normalized root mean square error of 0.017 in the Henon map time-series prediction. Besides, both the volatile and nonvolatile FDs demonstrate long-term stability in ambient air, high endurance, and low power consumption, promising the all-ferroelectric RC system as a reliable and low-power neuromorphic hardware for temporal information processing. While reservoir computing can process temporal information efficiently, its hardware implementation remains a challenge due to the lack of robust and energy efficient hardware. Here, the authors develop an all-ferroelectric reservoir computing system, showing high accuracies and low power consumptions in various tasks like the time-series prediction.
引用
收藏
页数:12
相关论文
共 64 条
  • [11] Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification
    Cucchi, Matteo
    Gruener, Christopher
    Petrauskas, Lautaro
    Steiner, Peter
    Tseng, Hsin
    Fischer, Axel
    Penkovsky, Bogdan
    Matthus, Christian
    Birkholz, Peter
    Kleemann, Hans
    Leo, Karl
    [J]. SCIENCE ADVANCES, 2021, 7 (34):
  • [12] Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision
    Cui, Boyuan
    Fan, Zhen
    Li, Wenjie
    Chen, Yihong
    Dong, Shuai
    Tan, Zhengwei
    Cheng, Shengliang
    Tian, Bobo
    Tao, Ruiqiang
    Tian, Guo
    Chen, Deyang
    Hou, Zhipeng
    Qin, Minghui
    Zeng, Min
    Lu, Xubing
    Zhou, Guofu
    Gao, Xingsen
    Liu, Jun-Ming
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [13] Dynamically-Driven Emergence in a Nanomagnetic System
    Dawidek, Richard W.
    Hayward, Thomas J.
    Vidamour, Ian T.
    Broomhall, Thomas J.
    Venkat, Guru
    Al Mamoori, Mohanad
    Mullen, Aidan
    Kyle, Stephan J.
    Fry, Paul W.
    Steinke, Nina-Juliane
    Cooper, Joshaniel F. K.
    Maccherozzi, Francesco
    Dhesi, Sarnjeet S.
    Aballe, Lucia
    Foerster, Michael
    Prat, Jordi
    Vasilaki, Eleni
    Ellis, Matthew O. A.
    Allwood, Dan A.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (15)
  • [14] Reservoir computing using dynamic memristors for temporal information processing
    Du, Chao
    Cai, Fuxi
    Zidan, Mohammed A.
    Ma, Wen
    Lee, Seung Hwan
    Lu, Wei D.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [15] Ferroelectric Diodes with Charge Injection and Trapping
    Fan, Zhen
    Fan, Hua
    Lu, Zengxing
    Li, Peilian
    Huang, Zhifeng
    Tian, Guo
    Yang, Lin
    Yao, Junxiang
    Chen, Chao
    Chen, Deyang
    Yan, Zhibo
    Lu, Xubing
    Gao, Xingsen
    Liu, Jun-Ming
    [J]. PHYSICAL REVIEW APPLIED, 2017, 7 (01):
  • [16] Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting
    Gartside, Jack C.
    Stenning, Kilian D.
    Vanstone, Alex
    Holder, Holly H.
    Arroo, Daan M.
    Dion, Troy
    Caravelli, Francesco
    Kurebayashi, Hidekazu
    Branford, Will R.
    [J]. NATURE NANOTECHNOLOGY, 2022, 17 (05) : 460 - +
  • [17] Henon M., 2004, The theory of chaotic attractors, P94
  • [18] Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
    Hochstetter, Joel
    Zhu, Ruomin
    Loeffler, Alon
    Diaz-Alvarez, Adrian
    Nakayama, Tomonobu
    Kuncic, Zdenka
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [19] Ultrasensitive Memristive Synapses Based on Lightly Oxidized Sulfide Films
    Hu, Lingxiang
    Fu, Sheng
    Chen, Youhu
    Cao, Hongtao
    Liang, Lingyan
    Zhang, Hongliang
    Gao, Junhua
    Wang, Jingrui
    Zhuge, Fei
    [J]. ADVANCED MATERIALS, 2017, 29 (24)
  • [20] A Resistive Memory in Semiconducting BiFeO3 Thin-Film Capacitors
    Jiang, An Quan
    Wang, Can
    Jin, Kui Juan
    Liu, Xiao Bing
    Scott, James F.
    Hwang, Cheol Seong
    Tang, Ting Ao
    Bin Lu, Hui
    Yang, Guo Zhen
    [J]. ADVANCED MATERIALS, 2011, 23 (10) : 1277 - +