All-ferroelectric implementation of reservoir computing

被引:87
作者
Chen, Zhiwei [1 ,2 ]
Li, Wenjie [1 ,2 ]
Fan, Zhen [1 ,2 ]
Dong, Shuai [1 ,2 ]
Chen, Yihong [1 ,2 ]
Qin, Minghui [1 ,2 ]
Zeng, Min [1 ,2 ]
Lu, Xubing [1 ,2 ]
Zhou, Guofu [3 ]
Gao, Xingsen [1 ,2 ]
Liu, Jun-Ming [1 ,2 ,4 ]
机构
[1] South China Normal Univ, South China Acad Adv Optoelect, Inst Adv Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Natl Ctr Int Res Green Optoelect, Guangzhou 510006, Peoples R China
[4] Nanjing Univ, Innovat Ctr Adv Microstruct, Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-023-39371-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reservoir computing (RC) offers efficient temporal information processing with low training cost. All-ferroelectric implementation of RC is appealing because it can fully exploit the merits of ferroelectric memristors (e.g., good controllability); however, this has been undemonstrated due to the challenge of developing ferroelectric memristors with distinctly different switching characteristics specific to the reservoir and readout network. Here, we experimentally demonstrate an all-ferroelectric RC system whose reservoir and readout network are implemented with volatile and nonvolatile ferroelectric diodes (FDs), respectively. The volatile and nonvolatile FDs are derived from the same Pt/BiFeO3/SrRuO3 structure via the manipulation of an imprint field (E-imp). It is shown that the volatile FD with E-imp exhibits short-term memory and nonlinearity while the nonvolatile FD with negligible E-imp displays long-term potentiation/depression, fulfilling the functional requirements of the reservoir and readout network, respectively. Hence, the all-ferroelectric RC system is competent for handling various temporal tasks. In particular, it achieves an ultralow normalized root mean square error of 0.017 in the Henon map time-series prediction. Besides, both the volatile and nonvolatile FDs demonstrate long-term stability in ambient air, high endurance, and low power consumption, promising the all-ferroelectric RC system as a reliable and low-power neuromorphic hardware for temporal information processing. While reservoir computing can process temporal information efficiently, its hardware implementation remains a challenge due to the lack of robust and energy efficient hardware. Here, the authors develop an all-ferroelectric reservoir computing system, showing high accuracies and low power consumptions in various tasks like the time-series prediction.
引用
收藏
页数:12
相关论文
共 64 条
  • [1] A perspective on physical reservoir computing with nanomagnetic devices
    Allwood, Dan A.
    Ellis, Matthew O. A.
    Griffin, David
    Hayward, Thomas J.
    Manneschi, Luca
    Musameh, Mohammad F. KH.
    O'Keefe, Simon
    Stepney, Susan
    Swindells, Charles
    Trefzer, Martin A.
    Vasilaki, Eleni
    Venkat, Guru
    Vidamour, Ian
    Wringe, Chester
    [J]. APPLIED PHYSICS LETTERS, 2023, 122 (04)
  • [2] Information processing using a single dynamical node as complex system
    Appeltant, L.
    Soriano, M. C.
    Van der Sande, G.
    Danckaert, J.
    Massar, S.
    Dambre, J.
    Schrauwen, B.
    Mirasso, C. R.
    Fischer, I.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [3] Role of non-linear data processing on speech recognition task in the framework of reservoir computing
    Araujo, Flavio Abreu
    Riou, Mathieu
    Torrejon, Jacob
    Tsunegi, Sumito
    Querlioz, Damien
    Yakushiji, Kay
    Fukushima, Akio
    Kubota, Hitoshi
    Yuasa, Shinji
    Stiles, Mark D.
    Grollier, Julie
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [4] A solution to the learning dilemma for recurrent networks of spiking neurons
    Bellec, Guillaume
    Scherr, Franz
    Subramoney, Anand
    Hajek, Elias
    Salaj, Darjan
    Legenstein, Robert
    Maass, Wolfgang
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [5] First-principles study of the critical thickness in asymmetric ferroelectric tunnel junctions
    Cai, Meng-Qiu
    Du, Yong
    Huang, Bo-Yun
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (10)
  • [6] Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
  • [7] Highly Uniform All-Vacuum-Deposited Inorganic Perovskite Artificial Synapses for Reservoir Computing
    Chen, Li-Wei
    Wang, Wei-Chun
    Ko, Shao-Han
    Chen, Chien-Yu
    Hsu, Chih-Ting
    Chiao, Fu-Ching
    Chen, Tse-Wei
    Wu, Kai-Chiang
    Lin, Hao-Wu
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (01)
  • [8] Highly Controllable and Silicon-Compatible Ferroelectric Photovoltaic Synapses for Neuromorphic Computing
    Cheng, Shengliang
    Fan, Zhen
    Rao, Jingjing
    Hong, Lanqing
    Huang, Qicheng
    Tao, Ruiqiang
    Hou, Zhipeng
    Qin, Minghui
    Zeng, Min
    Lu, Xubing
    Zhou, Guofu
    Yuan, Guoliang
    Gao, Xingsen
    Liu, Jun-Ming
    [J]. ISCIENCE, 2020, 23 (12)
  • [9] Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3
    Choi, T.
    Lee, S.
    Choi, Y. J.
    Kiryukhin, V.
    Cheong, S. -W.
    [J]. SCIENCE, 2009, 324 (5923) : 63 - 66
  • [10] Hands-on reservoir computing: a tutorial for practical implementation
    Cucchi, Matteo
    Abreu, Steven
    Ciccone, Giuseppe
    Brunner, Daniel
    Kleemann, Hans
    [J]. NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (03):