Artificial intelligence-enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia

被引:7
|
作者
Sau, Arunashis [1 ,2 ]
Ibrahim, Safi [1 ]
Kramer, Daniel B. [1 ,3 ]
Waks, Jonathan W. [4 ]
Qureshi, Norman [1 ,2 ]
Koa-Wing, Michael [2 ]
Keene, Daniel [2 ]
Malcolme-Lawes, Louisa [2 ]
Lefroy, David C. [2 ]
Linton, Nicholas W. F. [1 ,2 ]
Lim, Phang Boon [1 ,2 ]
Varnava, Amanda [2 ]
Whinnett, Zachary I. [1 ,2 ]
Kanagaratnam, Prapa [1 ,2 ]
Mandic, Danilo [5 ]
Peters, Nicholas S. [1 ,2 ]
Ng, Fu Siong [1 ,2 ,6 ,7 ]
机构
[1] Imperial Coll London, Natl Heart & Lung Inst, London, England
[2] Imperial Coll Healthcare NHS Trust, Dept Cardiol, London, England
[3] Harvard Med Sch, Richard A & Susan F Smith Ctr Outcomes Res Cardiol, Beth Israel Deaconess Med Ctr, Boston, MA USA
[4] Harvard Med Sch, Harvard Thorndike Electrophysiol Inst, Beth Israel Deaconess Med Ctr, Boston, MA USA
[5] Imperial Coll London, Dept Elect & Elect Engn, London, England
[6] Chelsea & Westminster Hosp NHS Fdn Trust, Dept Cardiol, London, England
[7] Imperial Coll London, Natl Heart & Lung Inst, Imperial Ctr Translat & Expt Med, Cardiac Electrophysiol, 4th Floor,Hammersmith Campus,Du Cane Rd, London W12 0NN, England
来源
CARDIOVASCULAR DIGITAL HEALTH JOURNAL | 2023年 / 4卷 / 02期
关键词
Artificial intelligence; Machine learning; Electrocardio-gram; Atrioventricular re-entrant tachycardia; Atrioventricular nodal re-entrant tachycardia; Electrophysiology study; Ablation; RECIPROCATING TACHYCARDIA; ABLATION; PATHWAY; DIFFERENTIATION; CLASSIFICATION; ALGORITHM; CRITERIA; WAVES;
D O I
10.1016/j.cvdhj.2023.01.004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachy-cardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the inva-sive electrophysiology (EP) study as the gold standard.METHODS We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.RESULTS The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sec-tions of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.CONCLUSION We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.
引用
收藏
页码:60 / 67
页数:8
相关论文
共 50 条
  • [21] Non-Re-Entrant Atrioventricular Nodal Tachycardia
    Haman, Ludek
    Praus, Rudolf
    Parizek, Petr
    MILITARY MEDICINE, 2009, 174 (08) : 866 - 868
  • [22] A case of Wolff-Parkinson-White syndrome presenting spontaneous mutual frequent transition between atrioventricular reciprocating tachycardia and atrioventricular nodal re-entrant tachycardia
    Kondo, Hidekazu
    Shinohara, Tetsuji
    Otsubo, Toyokazu
    Miyoshi, Miho
    Fukui, Akira
    Tsuchiya, Takeshi
    Takahashi, Naohiko
    JOURNAL OF ELECTROCARDIOLOGY, 2018, 51 (03) : 467 - 469
  • [23] Atrioventricular block occurring several months after radiofrequency ablation for the treatment of atrioventricular nodal re-entrant tachycardia
    Elhag, O
    Miller, HC
    HEART, 1998, 79 (06) : 616 - 618
  • [24] Radiofrequency ablation versus cryoablation for atrioventricular nodal re-entrant tachycardia in children: a value comparison
    Oster, Matthew E.
    Yang, Zhou
    Stewart-Huey, Kay
    Glanville, Michelle
    Porter, Arlene
    Campbell, Robert
    Webb, Brad
    Strieper, Margaret
    CARDIOLOGY IN THE YOUNG, 2017, 27 (02) : 224 - 228
  • [25] Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance
    Alvarez, Miguel
    Tercedor, Luis
    Almansa, Isabel
    Ros, Natalia
    Galdeano, Ricardo S.
    Burillo, Francisco
    Santiago, Pablo
    Penas, Rocio
    HEART RHYTHM, 2009, 6 (12) : 1714 - 1720
  • [26] Dual atrioventricular nodal non-re-entrant tachycardia
    Peiker, Christiane
    Pott, Christian
    Eckardt, Lars
    Kelm, Malte
    Shin, Dong-In
    Willems, Stephan
    Meyer, Christian
    EUROPACE, 2016, 18 (03): : 332 - 339
  • [27] Utility of the aVL lead in the electrocardiographic diagnosis of atrioventricular node re-entrant tachycardia
    Di Toro, Dario
    Hadid, Claudio
    Lopez, Carlos
    Fuselli, Juan
    Luis, Vidal
    Labadet, Carlos
    EUROPACE, 2009, 11 (07): : 944 - 948
  • [28] Atrioventricular nodal re-entrant tachycardia: Are there unknown long-term consequences of ablating the (incompletely) known?
    Ip, James E.
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2022, 33 (11) : 2305 - 2307
  • [29] Distal end of the atrioventricular nodal artery predicts the risk of atrioventricular block during slow pathway catheter ablation of atrioventricular nodal re-entrant tachycardia
    Lin, JL
    Huang, SKS
    Lai, LP
    Lin, LJ
    Chen, JH
    Tseng, YZ
    Lien, WP
    HEART, 2000, 83 (05) : 543 - 550
  • [30] Novel electrophysiological characteristics of atrioventricular nodal continuous conduction curves in atrioventricular nodal re-entrant tachycardia with concomitant cavotricuspid isthmus-dependent atrial flutter
    Lin, Chung-Hsing
    Lin, Yenn-Jiang
    Chang, Shih-Lin
    Lo, Li-Wei
    Huang, Hung-Kai
    Chiang, Cheng-Hung
    Allamsetty, Suresh
    Liao, Jo-Nan
    Chung, Fa-Po
    Chang, Yao-Ting
    Lin, Chin-Yu
    Chen, Shih-Ann
    EUROPACE, 2016, 18 (08): : 1259 - 1264