Artificial intelligence-enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia

被引:9
作者
Sau, Arunashis [1 ,2 ]
Ibrahim, Safi [1 ]
Kramer, Daniel B. [1 ,3 ]
Waks, Jonathan W. [4 ]
Qureshi, Norman [1 ,2 ]
Koa-Wing, Michael [2 ]
Keene, Daniel [2 ]
Malcolme-Lawes, Louisa [2 ]
Lefroy, David C. [2 ]
Linton, Nicholas W. F. [1 ,2 ]
Lim, Phang Boon [1 ,2 ]
Varnava, Amanda [2 ]
Whinnett, Zachary I. [1 ,2 ]
Kanagaratnam, Prapa [1 ,2 ]
Mandic, Danilo [5 ]
Peters, Nicholas S. [1 ,2 ]
Ng, Fu Siong [1 ,2 ,6 ,7 ]
机构
[1] Imperial Coll London, Natl Heart & Lung Inst, London, England
[2] Imperial Coll Healthcare NHS Trust, Dept Cardiol, London, England
[3] Harvard Med Sch, Richard A & Susan F Smith Ctr Outcomes Res Cardiol, Beth Israel Deaconess Med Ctr, Boston, MA USA
[4] Harvard Med Sch, Harvard Thorndike Electrophysiol Inst, Beth Israel Deaconess Med Ctr, Boston, MA USA
[5] Imperial Coll London, Dept Elect & Elect Engn, London, England
[6] Chelsea & Westminster Hosp NHS Fdn Trust, Dept Cardiol, London, England
[7] Imperial Coll London, Natl Heart & Lung Inst, Imperial Ctr Translat & Expt Med, Cardiac Electrophysiol, 4th Floor,Hammersmith Campus,Du Cane Rd, London W12 0NN, England
来源
CARDIOVASCULAR DIGITAL HEALTH JOURNAL | 2023年 / 4卷 / 02期
关键词
Artificial intelligence; Machine learning; Electrocardio-gram; Atrioventricular re-entrant tachycardia; Atrioventricular nodal re-entrant tachycardia; Electrophysiology study; Ablation; RECIPROCATING TACHYCARDIA; ABLATION; PATHWAY; DIFFERENTIATION; CLASSIFICATION; ALGORITHM; CRITERIA; WAVES;
D O I
10.1016/j.cvdhj.2023.01.004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachy-cardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the inva-sive electrophysiology (EP) study as the gold standard.METHODS We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.RESULTS The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sec-tions of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.CONCLUSION We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.
引用
收藏
页码:60 / 67
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 2003, J AM COLL CARDIOL, V42, P1493
[2]   Differentiating atrioventricular nodal reentrant tachycardia from tachycardia via concealed accessory pathway [J].
Arya, A ;
Kottkamp, H ;
Piorkowski, C ;
Schirdewahn, P ;
Tanner, H ;
Kobza, R ;
Dorszewski, A ;
Gerds-Li, JH ;
Hindricks, G .
AMERICAN JOURNAL OF CARDIOLOGY, 2005, 95 (07) :875-878
[3]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[4]   2019 ESC Guidelines for the management of patients with supraventricular tachycardia The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC): Developed in collaboration with the Association for European Paediatric and Congenital Cardiology (AEPC) [J].
Brugada, Josep ;
Katritsis, Demosthenes G. ;
Arbelo, Elena ;
Arribas, Fernando ;
Bax, Jeroen J. ;
Blomstrom-Lundqvist, Carina ;
Calkins, Hugh ;
Corrado, Domenico ;
Deftereos, Spyridon G. ;
Diller, Gerhard-Paul ;
Gomez-Doblas, Juan J. ;
Gorenek, Bulent ;
Grace, Andrew ;
Ho, Siew Yen ;
Kaski, Juan-Carlos ;
Kuck, Karl-Heinz ;
Lambiase, Pier David ;
Sacher, Frederic ;
Sarquella-Brugada, Georgia ;
Suwalski, Piotr ;
Zaza, Antonio .
EUROPEAN HEART JOURNAL, 2020, 41 (05) :655-720
[5]   Zero-fluoroscopy approach for ablation of supraventricular tachycardia using the Ensite NavX system: a multicenter experience [J].
Chen, Guangzhi ;
Wang, Yan ;
Proietti, Riccardo ;
Wang, Xunzhang ;
Ouyang, Feifan ;
Ma, Chang Sheng ;
Yu, Rong Hui ;
Zhao, Chunxia ;
Ma, Kezhong ;
Qiu, Jie ;
Liu, Qigong ;
Wang, Dao Wen .
BMC CARDIOVASCULAR DISORDERS, 2020, 20 (01)
[6]   Utility of the aVL lead in the electrocardiographic diagnosis of atrioventricular node re-entrant tachycardia [J].
Di Toro, Dario ;
Hadid, Claudio ;
Lopez, Carlos ;
Fuselli, Juan ;
Luis, Vidal ;
Labadet, Carlos .
EUROPACE, 2009, 11 (07) :944-948
[7]   Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J].
Hannun, Awni Y. ;
Rajpurkar, Pranav ;
Haghpanahi, Masoumeh ;
Tison, Geoffrey H. ;
Bourn, Codie ;
Turakhia, Mintu P. ;
Ng, Andrew Y. .
NATURE MEDICINE, 2019, 25 (01) :65-+
[8]   Machine learning with convolutional neural networks for clinical cardiologists [J].
Howard, James Philip ;
Francis, Darrel P. .
HEART, 2022, 108 (12) :973-981
[9]  
Howard JP, CUSTOM DIGITAL ECG S
[10]   ROLE OF INTRAVENOUS ISOPROTERENOL IN THE ELECTROPHYSIOLOGIC INDUCTION OF ATRIOVENTRICULAR NODE REENTRANT TACHYCARDIA IN PATIENTS WITH DUAL ATRIOVENTRICULAR NODE PATHWAYS [J].
HUYCKE, EC ;
LAI, WT ;
NGUYEN, NX ;
KEUNG, EC ;
SUNG, RJ .
AMERICAN JOURNAL OF CARDIOLOGY, 1989, 64 (18) :1131-1137