The Power of ECG in Semi-Automated Seizure Detection in Addition to Two-Channel behind-the-Ear EEG

被引:6
作者
Bhagubai, Miguel [1 ]
Vandecasteele, Kaat [1 ]
Swinnen, Lauren [2 ]
Macea, Jaiver [2 ]
Chatzichristos, Christos [1 ]
De Vos, Maarten [1 ,3 ]
Van Paesschen, Wim [2 ]
机构
[1] Katholieke Univ Leuven, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, Dept Elect Engn ESAT, B-3001 Leuven, Belgium
[2] Univ Hosp Leuven, Lab Epilepsy Res, B-3000 Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Dev & Regenerat, B-3000 Leuven, Belgium
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 04期
关键词
epilepsy; seizure detection; multimodal; behind-the-ear EEG; ECG; ictal heart rate;
D O I
10.3390/bioengineering10040491
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Long-term home monitoring of people living with epilepsy cannot be achieved using the standard full-scalp electroencephalography (EEG) coupled with video. Wearable seizure detection devices, such as behind-the-ear EEG (bte-EEG), offer an unobtrusive method for ambulatory follow-up of this population. Combining bte-EEG with electrocardiography (ECG) can enhance automated seizure detection performance. However, such frameworks produce high false alarm rates, making visual review necessary. This study aimed to evaluate a semi-automated multimodal wearable seizure detection framework using bte-EEG and ECG. Using the SeizeIT1 dataset of 42 patients with focal epilepsy, an automated multimodal seizure detection algorithm was used to produce seizure alarms. Two reviewers evaluated the algorithm's detections twice: (1) using only bte-EEG data and (2) using bte-EEG, ECG, and heart rate signals. The readers achieved a mean sensitivity of 59.1% in the bte-EEG visual experiment, with a false detection rate of 6.5 false detections per day. Adding ECG resulted in a higher mean sensitivity (62.2%) and a largely reduced false detection rate (mean of 2.4 false detections per day), as well as an increased inter-rater agreement. The multimodal framework allows for efficient review time, making it beneficial for both clinicians and patients.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Machine learning-based EEG signals classification model for epileptic seizure detection [J].
Aayesha ;
Qureshi, Muhammad Bilal ;
Afzaal, Muhammad ;
Qureshi, Muhammad Shuaib ;
Fayaz, Muhammad .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (12) :17849-17877
[2]   Standards for testing and clinical validation of seizure detection devices [J].
Beniczky, Sandor ;
Ryvlin, Philippe .
EPILEPSIA, 2018, 59 :9-13
[3]   A review of feature extraction and performance evaluation in epileptic seizure detection using EEG [J].
Boonyakitanont, Poomipat ;
Lek-uthai, Apiwat ;
Chomtho, Krisnachai ;
Songsiri, Jitkomut .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 57
[4]  
Byteflies, US
[6]   Online Automated Seizure Detection in Temporal Lobe Epilepsy Patients Using Single-lead ECG [J].
De Cooman, Thomas ;
Varon, Carolina ;
Hunyadi, Borbala ;
Van Paesschen, Wim ;
Lagae, Lieven ;
Van Huffel, Sabine .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2017, 27 (07)
[7]   Initiation, Propagation, and Termination of Partial (Focal) Seizures [J].
de Curtis, Marco ;
Avoli, Massimo .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2015, 5 (07)
[8]  
epistulae, US
[9]   Seizure diaries for clinical research and practice: Limitations and future prospects [J].
Fisher, Robert S. ;
Blum, David E. ;
DiVentura, Bree ;
Vannest, Jennifer ;
Hixson, John D. ;
Moss, Robert ;
Herman, Susan T. ;
Fureman, Brandy E. ;
French, Jacqueline A. .
EPILEPSY & BEHAVIOR, 2012, 24 (03) :304-310
[10]  
Fraiwan MA, 2022, J ENG SCI TECHNOL, V17, P781