Deep Multi-Modal U-Net Fusion Methodology of Thermal and Ultrasonic Images for Porosity Detection in Additive Manufacturing

被引:7
|
作者
Zamiela, Christian [1 ]
Jiang, Zhipeng [2 ]
Stokes, Ryan [3 ]
Tian, Zhenhua [4 ]
Netchaev, Anton [5 ]
Dickerson, Charles [5 ]
Tian, Wenmeng [1 ]
Bian, Linkan [1 ]
机构
[1] Mississippi State Univ, Ctr Adv Vehicular Syst CAVS, Dept Ind & Syst Engn, Mississippi, MS 39762 USA
[2] Mississippi State Univ, Ctr Adv Vehicular Syst CAVS, Dept Aerosp Engn, Mississippi, MS 39762 USA
[3] Mississippi State Univ, Ctr Adv Vehicular Syst CAVS, Dept Mech Engn, Mississippi, MS 39762 USA
[4] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[5] US Army Engineer Res & Dev Ctr ERDC, Informat Technol Lab, Vicksburg, MS 39180 USA
来源
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME | 2023年 / 145卷 / 06期
关键词
additive manufacturing; sensor fusion; porosity detection; thermal sensing??????; ultrasonic sensing; inspection and quality control; laser processes; nondestructive; sensing; monitoring and diagnostics; PREDICTION;
D O I
10.1115/1.4056873
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We developed a deep fusion methodology of nondestructive in-situ thermal and ex-situ ultrasonic images for porosity detection in laser-based additive manufacturing (LBAM). A core challenge with the LBAM is the lack of fusion between successive layers of printed metal. Ultrasonic imaging can capture structural abnormalities by passing waves through successive layers. Alternatively, in-situ thermal images track the thermal history during fabrication. The proposed sensor fusion U-Net methodology fills the gap in fusing in-situ images with ex-situ images by employing a two-branch convolutional neural network (CNN) for feature extraction and segmentation to produce a 2D image of porosity. We modify the U-Net framework with the inception and long short term memory (LSTM) blocks. We validate the models by comparing our single modality models and fusion models with ground truth X-ray computed tomography (XCT) images. The inception U-Net fusion model achieved the highest mean intersection over union score of 0.93.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-modal Image Prediction via Spatial Hybrid U-Net
    Zaman, Akib
    Zhang, Lu
    Yan, Jingwen
    Zhu, Dajiang
    MULTISCALE MULTIMODAL MEDICAL IMAGING, MMMI 2019, 2020, 11977 : 1 - 9
  • [2] DUFuse: Deep U-Net for visual and infrared images fusion
    Pan Y.
    Pi D.
    Khan I.A.
    Meng H.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (09) : 12549 - 12561
  • [3] An Attention-Based Residual U-Net for Tumour Segmentation Using Multi-Modal MRI Brain Images
    Naqvi, Najme Zehra
    Seeja, K. R.
    IEEE ACCESS, 2025, 13 : 10240 - 10251
  • [4] Multi-modal Fusion Network for Rumor Detection with Texts and Images
    Li, Boqun
    Qian, Zhong
    Li, Peifeng
    Zhu, Qiaoming
    MULTIMEDIA MODELING (MMM 2022), PT I, 2022, 13141 : 15 - 27
  • [5] Exploring fusion techniques in U-Net and DeepLab V3 architectures for multi-modal land cover classification
    Qiu, Kevin
    Budde, Lina E.
    Bulatov, Dimitri
    Iwaszczuk, Dorota
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS XIII, 2022, 12268
  • [6] Improved Global U-Net applied for multi-modal brain tumor fuzzy segmentation
    Mishra, Annu
    Gupta, Pankaj
    Tewari, Peeyush
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (03) : 547 - 561
  • [7] Multi-modal Cell Segmentation based on U-Net plus plus and Attention Gate
    Yang, Xinye
    Chen, Hao
    Huang, Lihua
    Zhang, Xuru
    Huang, Liqin
    COMPETITIONS IN NEURAL INFORMATION PROCESSING SYSTEMS, VOL 212, 2022, 212
  • [8] Automatic liver segmentation using U-Net deep learning architecture for additive manufacturing
    Giri J.
    Sathish T.
    Sheikh T.
    Sunehriya N.
    Giri P.
    Chadge R.
    Mahatme C.
    Parthiban A.
    Interactions, 2024, 245 (01)
  • [9] Deep-Learning for Change Detection Using Multi-Modal Fusion of Remote Sensing Images: A Review
    Saidi, Souad
    Idbraim, Soufiane
    Karmoude, Younes
    Masse, Antoine
    Arbelo, Manuel
    REMOTE SENSING, 2024, 16 (20)
  • [10] Multi-modal deep fusion based fake news detection method
    Jing Q.
    Fan X.
    Wang B.
    Bi J.
    Tan H.
    High Technology Letters, 2022, 32 (04) : 392 - 403