Radiomics-based machine learning models in STEMI: a promising tool for the prediction of major adverse cardiac events

被引:20
作者
Durmaz, Emine Sebnem [1 ]
Karabacak, Mert [2 ]
Ozkara, Burak Berksu [2 ]
Kargin, Osman Aykan [1 ]
Raimoglu, Utku [3 ]
Tokdil, Hasan [3 ]
Durmaz, Eser [3 ]
Adaletli, Ibrahim [1 ]
机构
[1] Istanbul Univ Cerrahpasa, Cerrahpasa Sch Med, Radiol Dept, Istanbul, Turkiye
[2] Istanbul Univ Cerrahpasa, Cerrahpasa Sch Med, Istanbul, Turkiye
[3] Istanbul Univ Cerrahpasa, Cerrahpasa Sch Med, Cardiol Dept, Istanbul, Turkiye
关键词
Magnetic resonance imaging; Myocardial infarction; Artificial intelligence; Machine learning; ACUTE CORONARY SYNDROME; POSTDISCHARGE DEATH; REGISTRY; RISK;
D O I
10.1007/s00330-023-09394-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To evaluate the potential value of the machine learning (ML) models using radiomic features of late gadolinium enhancement (LGE) and cine images on magnetic resonance imaging (MRI) along with relevant clinical information and conventional MRI parameters for the prediction of major adverse cardiac events (MACE) in ST-segment elevation myocardial infarction (STEMI) patients. Methods This retrospective study included 60 patients with the first STEMI. MACE consisted of new-onset congestive heart failure, ventricular arrhythmia, and cardiac death. Radiomic features were extracted from cine and LGE images. Inter-class correlation coefficients (ICCs) were calculated to assess inter-observer reproducibility. LASSO (least absolute shrinkage and selection operator) method was used for radiomic feature selection. Seven separate models using a different combination of the available information were investigated. Classifications with repeat random sampling were done using adaptive boosting, k-nearest neighbor, naive Bayes, neural network, random forest, stochastic gradient descent, and support vector machine algorithms. Results Of the 1748 extracted radiomic features, 1393 showed good inter-observer agreement. With LASSO, 25 features were selected. Among the ML algorithms, the neural network showed the highest predictive performance on average (area under the curve (AUC) 0.822 +/- 0.181). Of the best-calculated model, the one using clinical parameters, CMRI parameters, and selected radiomic features (model 7), the diagnostic performance was as follows: 0.965 AUC, 0.894 classification accuracy, 0.906 sensitivity, 0.883 specificity, 0.875 positive predictive value (PPV), and 0.912 negative predictive value (NPV). Conclusion The radiomics-based ML models incorporating clinical and conventional MRI parameters are promising for predicting MACE occurrence in STEMI patients in the follow-up period.
引用
收藏
页码:4611 / 4620
页数:10
相关论文
共 18 条
[1]   2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: comments from the Dutch ACS working group [J].
Arslan, F. ;
Bongartz, L. ;
ten Berg, J. M. ;
Jukema, J. W. ;
Appelman, Y. ;
Liem, A. H. ;
de Winter, R. J. ;
van't Hof, A. W. J. ;
Damman, P. .
NETHERLANDS HEART JOURNAL, 2018, 26 (09) :417-421
[2]   Prognostic Value of a Comprehensive Cardiac Magnetic Resonance Assessment Soon After a First ST-Segment Elevation Myocardial Infarction [J].
Bodi, Vicente ;
Sanchis, Juan ;
Nunez, Julio ;
Mainar, Luis ;
Lopez-Lereu, Maria P. ;
Monmeneu, Jose V. ;
Rumiz, Eva ;
Chaustre, Fabian ;
Trapero, Isabel ;
Husser, Oliver ;
Forteza, Maria J. ;
Chorro, Francisco J. ;
Llacer, Angel .
JACC-CARDIOVASCULAR IMAGING, 2009, 2 (07) :835-842
[3]   Validity of the GRACE (Global Registry of Acute Coronary Events) acute coronary syndrome prediction model for six month post-discharge death in an independent data set [J].
Bradshaw, P. J. ;
Ko, D. T. ;
Newman, A. M. ;
Donovan, L. R. ;
Tu, J. V. .
HEART, 2006, 92 (07) :905-909
[4]   Myocardial extracellular volume fraction radiomics analysis for differentiation of reversible versus irreversible myocardial damage and prediction of left ventricular adverse remodeling after ST-elevation myocardial infarction [J].
Chen, Bing-Hua ;
An, Dong-Aolei ;
He, Jie ;
Wu, Chong-Wen ;
Yue, Ting ;
Wu, Rui ;
Shi, Ruo-Yang ;
Eteer, Khalid ;
Joseph, Bobby ;
Hu, Jiani ;
Xu, Jian-Rong ;
Wu, Lian-Ming ;
Pu, Jun .
EUROPEAN RADIOLOGY, 2021, 31 (01) :504-514
[5]  
Choi JY, 2018, NUCL MED MOLEC IMAG, V52, P89, DOI 10.1007/s13139-018-0514-0
[6]  
Demsar J, 2013, J MACH LEARN RES, V14, P2349
[7]   A validated prediction model for all forms of acute coronary syndrome - Estimating the risk of 6-month postdischarge death in an international registry [J].
Eagle, KA ;
Lim, MJ ;
Dabbous, OH ;
Pieper, KS ;
Goldberg, RJ ;
Van de Werf, F ;
Goodman, SG ;
Granger, CB ;
Steg, PG ;
Gore, JM ;
Budaj, A ;
Avezum, A ;
Flather, MD ;
Fox, KAA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2004, 291 (22) :2727-2733
[8]   Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II [J].
Farooq, Vasim ;
van Klaveren, David ;
Steyerberg, Ewout W. ;
Meliga, Emanuele ;
Vergouwe, Yvonne ;
Chieffo, Alaide ;
Kappetein, Arie Pieter ;
Colombo, Antonio ;
Holmes, David R., Jr. ;
Mack, Michael ;
Feldman, Ted ;
Morice, Marie-Claude ;
Stahle, Elisabeth ;
Onuma, Yoshinobu ;
Morel, Marie-angele ;
Garcia-Garcia, Hector M. ;
van Es, Gerrit Anne ;
Dawkins, Keith D. ;
Mohr, Friedrich W. ;
Serruys, Patrick W. .
LANCET, 2013, 381 (9867) :639-650
[9]   Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006 [J].
Fox, Keith A. A. ;
Steg, Philippe Gabriel ;
Eagle, Kim A. ;
Goodman, Shaun G. ;
Anderson, Frederick A., Jr. ;
Granger, Christopher B. ;
Flather, Marcus D. ;
Budaj, Andrzej ;
Quill, Ann ;
Gore, Joel M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 297 (17) :1892-1900
[10]   Quantitative assessment of myocardial scar heterogeneity using cardiovascular magnetic resonance texture analysis to risk stratify patients post-myocardial infarction [J].
Gibbs, T. ;
Villa, A. D. M. ;
Sammut, E. ;
Jeyabraba, S. ;
Carr-White, G. ;
Ismail, T. F. ;
Mullen, G. ;
Ganeshan, B. ;
Chiribiri, A. .
CLINICAL RADIOLOGY, 2018, 73 (12) :1059.e17-1059.e26